TECH NOTE TEK 17-02A

Provided By:

PRECAST CONCRETE LINTELS FOR CONCRETE MASONRY CONSTRUCTION

INTRODUCTION

Lintels function as beams to support the wall weight and other loads over an opening, and to transfer these loads to the adjacent masonry. Because of their rigidity, strength, durability, fire resistance and aesthetics, the most common types of lintels for concrete masonry construction are those manufactured of precast reinforced concrete or reinforced concrete masonry units (ref. 3). The color and surface texture of these lintels can be used as an accent or to duplicate the surrounding masonry.

LINTEL DIMENSIONS

Precast lintel dimensions are illustrated in Figure 1. Precast concrete lintels are manufactured to modular sizes, having specified dimensions corresponding to the concrete masonry units being used in the construction.

A modular lintel length should be specified, with a minimum length of the clear span plus 8 in. (203 mm), to provide at least 4 in. (102 mm) bearing at each end (ref. 1). Additionally, if lintels are subjected to tensile stresses during storage, transportation, handling, or placement, it is recommended that steel reinforcement be provided in both the top and bottom to prevent cracking. Minimum concrete cover over the steel should be $1^{11}/_{2}$ in. (13 mm). The lintel width, or width of the combination of side-by-side lintels, should equal the width of the supported masonry wythe.

Lintels should be clearly marked on the top whenever possible to prevent the possibility of improper installation in the wall. In the event the top of the lintel is not marked and may be installed upside down, the same size bars should be used in both the top and bottom.

LINTEL DESIGN

Precast concrete lintels are designed using the strength design provisions of *Building Code Requirements for Structural Concrete*, ACI 318-99 (ref. 2). In strength design, service loads are increased to account for variations in anticipated loads, becoming factored loads. The lintel is then sized to provide

sufficient design strength. Further information on determining design loads for lintels is included in *ASD of CM Lintels Based on 2012 IBC/2011 MSJC*, TEK 17-01D (ref. 3).

Nominal lintel strength is determined based on the strength design provisions of ACI 318 and then reduced by strength reduction factors, called phi (ϕ) factors. These factors account for any variability in materials and construction practices. The resulting capacity needs to equal or exceed the factored loads. Precast concrete strength reduction factors are 0.9 and 0.85 for flexure and shear, respectively (ref. 2).

Tables 1 through 4 list design moment and shear strengths for various precast lintel sizes and concrete strengths, based on the following criteria (ref. 2).

Flexural strength:

$$\phi M_n = \phi [A_s f_y (d-a/2)], \quad \phi = 0.9$$

Shear strength, no shear reinforcement:

$$\phi V_{a} = \phi (2) (f'_{a})^{1/2} bd, \ \phi = 0.85$$

ACI 318 contains requirements for minimum and maximum reinforcing steel areas to ensure a minimum level of performance. Minimum reinforcement area for lintels is $A_{s\,min}=3(f'_c)^{1/2}bdlf_y$ but not less than $200bdlf_y$. In addition, the reinforcement ratio is limited to 75% of the balanced reinforcement ratio, $\rho_{max}=0.75\rho_b$.

Deflection criteria for lintels is based on controlling cracking in the masonry being supported. Consequently, less deflection is allowed when the lintel supports unreinforced masonry. In this case, lintel deflection is limited to the effective span of the lintel (measured in inches) divided by 600 (L/600) (ref. 1). In addition, ACI 318 limits precast lintel deflection to L/240 when the element supported by the lintel is not likely to be damaged by large deflections, and L/480 when the element supported by the lintel is likely to be damaged by large deflections. Lintel deflection is calculated based on the effective moment of inertia, $I_{*,*}$ as follows (ref. 2, Section 9.5.2.3).

$$I_{e}$$
 = $(M_{c}/M_{max\,uf})^{3}I_{g}$ + $[1-(M_{cf}/M_{max\,uf})^{3}]I_{cr} \leq I_{g}$

Shrinkage and creep due to sustained loads cause additional long-term deflections over and above those occurring when loads are first applied. ACI 318 requires that deflections due to shrinkage and creep are included, and provides an expression to estimate this additional deflection (ACI 318 Section 9.5.2.5):

$$\lambda = \xi/(1+50\rho')$$

where $\xi = 2.0$ for exposures of 5 years or more.

DESIGN EXAMPLE

The residential basement wall shown in Figure 3 needs a lintel over the window opening. The floor live load is 400 lb (1.8 kN) per joist and the floor dead load is 100 lb (0.44 kN) per joist. Consider the floor joist loads, spaced at 16 in. (406 mm) on center, as uniformly distributed. Use a lintel self-weight of 61 lb/ ft (0.89 kN/m) and weight of 77.9 lb/ft² (3.73 kPa) for the bond beam at the top of the wall over the lintel.

<u>Determine effective depth, *d*:</u> Assuming an 8 in. (203 mm) high lintel with two No. 4 (13M) bars,

$$d = 7.625 \text{ in.} - 1.5 \text{ in.} - 0.5/2 \text{ in.}$$

= 5.88 in. (149 mm)

<u>Check for arching action</u>: The effective span length, L = 96 + 5.88 = 101.9 in. (2588 mm). Since the height of masonry above the opening is less than L/2, arching of the masonry over the opening cannot be assumed.

Determine design loads:

$$LL = (400 \text{ lb})(12/16 \text{ in.}) = 300 \text{ lb/ft} (4.4 \text{ kN/m})$$

Dead loads include floor, wall, and lintel self-weight.

$$D_{floor} = 100 \text{ lb } (12/16 \text{ in.}) = 75 \text{ lb/ft } (1.1 \text{ kN/m})$$

 $D_{lintel} = 61 \text{ lb/ft } (0.89 \text{ kN/m})$

$$D_{b \, beam} = (77.9 \, \text{lb/ft}^2)(7.625/12 \, \text{ft}) = 50 \, \text{lb/ft} (0.31 \, \text{kN/m})$$

$$D_{total} = (75 + 61 + 50)$$
 = 186 lb/ft (3.2 kN/m)

For deflection calculations use loads as given above. For strength design multiply live loads by 1.7 and dead loads by 1.4.

Maximum moment and shear for strength design:

$$M_{max} = wL^2/8$$

= {[(1.7)(300)+(1.4)(186)]b/ft](101.9 in.)²/8}(ft/12 in.)
= 83,328 in.-lb (9.4 kN·m)

	nd Moment Cap	acity for 4 x 8 in. (ete Lintels	(102 mm)
g No.						A 8 In. √ (203 mi
of	` '		3500 (24.1)		4000 (27.6)	
bars	ϕV_n	ϕM_n	ϕV_n	ϕM_n	ϕV_n	ϕM_n
	lb (kN)	inlb (kN·m)	lb (kN)	inlb (kN·m)	lb (kN)	inlb (kN·m)
1	2,000 (8.9)	33,140 (3.75)			2,310 (10.3)	
		. ,				
1	1,960 (8.7)	80,450 (9.09)	2,110 (9.4)	82,860 (9.36)	2,260 (10.1)	84,670 (9.57)
						6 in. (152 mm)
			/4=0 000 \ \			а 8 ln.
	nd Moment Cap	eacity for 6 x 8 in. (ete Lintels	(203 mm
-	3000	(20.7)			1000	1½ in. (38 mm)
		, ,		, ,		•
bars		**	**	**		ϕM_n
	, ,	, ,	, ,		` '	inlb (kN·m)
	· · · · ·	. ,				60,060 (6.79
					, , ,	89,160 (10.1) 66,430 (7.51)
		. ,				
2	·	. ,		[2]	3,510 (15.6)	162,040 (18.3
hear a g No.	nd Moment Cap	pacity for 8 x 8 in. (Reinforced Concre		1½ in. (38 mm)
	_	eacity for 8 x 8 in. (20.7)	f'_c , psi			
g No.	_		f'_c , psi	i (MPa)		1½ in. (38 mm)
g No. of	3000	(20.7)	f' _c , psi 3500	i (MPa) (24.1)	4000	1½ in. (38 mm) (27.6)
of bars	3000 ϕV_n Ib (kN) 4,170 (18.6)	(20.7) ϕM_n inlb (kN·m) 60,110 (6.79)	f' _c , psi 3500 ϕV_n Ib (kN) 4,500 (20.0)	(MPa) (24.1) ϕM_n inlb (kN·m) 60,590 (6.85)	4000 φ <i>V_n</i> lb (kN) 4,810 (21.4)	(27.6) ϕM_n inlb (kN·m) 60,950 (6.89
of bars	3000 ϕV_n Ib (kN) 4,170 (18.6) 4,120 (18.4)	(20.7) ϕM_n inlb (kN·m) 60,110 (6.79) 89,290 (10.1)	f' _c , psi 3500 φV _n lb (kN) 4,500 (20.0) 4,450 (19.8)	(MPa) (24.1) φM _n inlb (kN·m) 60,590 (6.85) 90,430 (10.2)	4000 φV _n lb (kN) 4,810 (21.4) 4,760 (21.2)	(27.6) ϕM_n inlb (kN·m) 60,950 (6.89 91,290 (10.3
of bars	3000 ϕV_n Ib (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2)	(20.7) ϕM_n inlb (kN·m) 60,110 (6.79) 89,290 (10.1) 120,490 (13.6)	f' _c , psi 3500 φV _n lb (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6)	$ \begin{array}{c} \text{(MPa)} \\ \text{(24.1)} \\ & \phi M_n \\ \text{inlb (kN·m)} \\ \hline 60,590 \ \ (6.85) \\ 90,430 \ \ (10.2) \\ 122,790 \ \ \ (13.9) \\ \end{array} $	4000 φV _n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0)	(27.6) \$\int_{1\frac{1}{2}\text{ in. (38 mm)}}\$ (27.6) \$\int_{0}\text{ finlb (kN·m)}\$ 60,950 (6.89) 91,290 (10.3) 124,520 (14.7)
No. of bars	3000 φV _n Ib (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2) 4,170 (18.6)	(20.7) φM _n inlb (kN·m) 60,110 (6.79) 89,290 (10.1) 120,490 (13.6) 113,560 (12.8)	f'_c , psi 3500 ϕV_n Ib (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6) 4,500 (20.0)	(MPa) (24.1) ϕM_n inlb (kN·m) 60,590 (6.85) 90,430 (10.2) 122,790 (13.9) 115,470 (13.0)	4000 φV _n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) 4,810 (21.4)	(27.6) \$\phi M_n\$ inlb (kN·m) 60,950 (6.89 91,290 (10.3) 124,520 (14.1) 116,900 (13.2)
of bars	3000 ϕV_n Ib (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2) 4,170 (18.6) 4,120 (18.4)	(20.7) φM _n inlb (kN·m) 60,110 (6.79) 89,290 (10.1) 120,490 (13.6) 113,560 (12.8) 162,570 (18.4)	f' _c , psi 3500 ϕV_n lb (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6) 4,500 (20.0) 4,450 (19.8)	(MPa) (24.1) ϕM_n inlb (kN·m) 60,590 (6.85) 90,430 (10.2) 122,790 (13.9) 115,470 (13.0)	4000 ϕV_n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) 4,810 (21.4) 4,760 (21.2)	4 (203 mm) (27.6) φM _n inlb (kN·m) 60,950 (6.89 91,290 (10.3 124,520 (14.1 116,900 (13.2 170,580 (19.3
of bars 1 1 1 2 2 2 hear a	3000 \$\psi V_n\$ b (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2) 4,170 (18.6) 4,120 (18.4) [2] and Moment Cap	φM _n inlb (kN·m) 60,110 (6.79) 89,290 (10.1) 120,490 (13.6) 113,560 (12.8) 162,570 (18.4) [2] eacity for 8 x 16 in.	f'_c , psi 3500 ϕV_n 1b (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6) 4,500 (20.0) 4,450 (19.8) [2] (203 x 406 mm) f'_c , psi	(MPa) (24.1) φM _n inlb (kN·m) 60,590 (6.85) 90,430 (10.2) 122,790 (13.9) 115,470 (13.0) 167,150 (18.9) [2] Reinforced Concide (MPa)	4000 φV _n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) rete Lintels ³	φM _n inlb (kN·m) 60,950 (6.89 91,290 (10.3 124,520 (14.116,900 (13.2 170,580 (19.3 224,840 (25.4
of bars 1 1 2 2 2	3000 \$\psi V_n\$ b (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2) 4,170 (18.6) 4,120 (18.4) [2] and Moment Cap	$\begin{array}{c} \phi M_n \\ \text{inlb (kN·m)} \\ \hline 60,110 & (6.79) \\ 89,290 & (10.1) \\ 120,490 & (13.6) \\ 113,560 & (12.8) \\ 162,570 & (18.4) \\ [2] \end{array}$	f'_c , psi 3500 ϕV_n 1b (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6) 4,500 (20.0) 4,450 (19.8) [2] (203 x 406 mm) f'_c , psi	$\begin{array}{c} \text{(MPa)} \\ \text{(24.1)} \\ & \phi M_n \\ \text{inlb (kN·m)} \\ \hline 60,590 (6.85) \\ 90,430 (10.2) \\ 122,790 (13.9) \\ 115,470 (13.0) \\ 167,150 (18.9) \\ [2] \\ \hline \\ \textbf{Reinforced Concellation} \end{array}$	4000 φV _n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) rete Lintels ³	(27.6) \$\phi M_n\$ inlb (kN m) 60,950 (6.89 91,290 (10.3) 124,520 (14.16,900 (13.2) 170,580 (19.3) 224,840 (25.4)
of bars 1 1 1 2 2 2 hear a	3000 \$\psi V_n\$ b (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2) 4,170 (18.6) 4,120 (18.4) [2] and Moment Cap	φM _n inlb (kN·m) 60,110 (6.79) 89,290 (10.1) 120,490 (13.6) 113,560 (12.8) 162,570 (18.4) [2] eacity for 8 x 16 in.	f'_c , psi 3500 ϕV_n 1b (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6) 4,500 (20.0) 4,450 (19.8) [2] (203 x 406 mm) f'_c , psi	(MPa) (24.1) φM _n inlb (kN·m) 60,590 (6.85) 90,430 (10.2) 122,790 (13.9) 115,470 (13.0) 167,150 (18.9) [2] Reinforced Concide (MPa)	4000 φV _n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) rete Lintels ³	(27.6) \$\phi M_n\$ inlb (kN m) 60,950 (6.89) 91,290 (10.3) 124,520 (14.16,900 (13.2) 170,580 (19.3) 224,840 (25.4)
of bars 1 1 1 2 2 2 No. of	3000 \$\psi V_n\$ Ib (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2) 4,170 (18.6) 4,120 (18.4) [2] and Moment Cap 3000	$\begin{array}{c} & \phi M_n \\ & \text{inlb (kN·m)} \\ \hline & 60,110 \ (6.79) \\ & 89,290 \ (10.1) \\ & 120,490 \ (13.6) \\ & 113,560 \ (12.8) \\ & 162,570 \ (18.4) \\ & [2] \\ \\ & \text{pacity for 8 x 16 in.} \\ \end{array}$	f' _c , psi 3500 ϕV_n Ib (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6) 4,500 (20.0) 4,450 (19.8) [2] (203 x 406 mm) f' _c , psi 3500	(MPa) (24.1) φM _n inlb (kN·m) 60,590 (6.85) 90,430 (10.2) 122,790 (13.9) 115,470 (13.0) 167,150 (18.9) [2] Reinforced Concil (MPa) (24.1)	4000 ϕV_n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) rete Lintels ³	(27.6) (27.6) (27.6) (27.6) (27.6) (27.6) (27.6) (27.6) (27.6) (27.6) (27.6) (27.6) (203 mm) (27.6) (203 mm) (204 mm) (2
of bars 1 1 1 2 2 2 No. of	3000 \$\psi V_n\$ b (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2) 4,170 (18.6) 4,120 (18.4) [2] and Moment Cap \$\psi V_n\$	ϕM_n inlb (kN·m) $60,110 (6.79)$ $89,290 (10.1)$ $120,490 (13.6)$ $113,560 (12.8)$ $162,570 (18.4)$ [2] pacity for 8 x 16 in. ϕM_n	f'_c , psi 3500 ϕV_n b (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6) 4,500 (20.0) 4,450 (19.8) [2] (203 x 406 mm) f'_c , psi 3500 ϕV_n b (kN)	$\begin{array}{c} \text{(MPa)} \\ \text{(24.1)} \\ & \phi M_n \\ \text{inlb (kN·m)} \\ \hline 60,590 \ \ (6.85) \\ 90,430 \ \ (10.2) \\ 122,790 \ \ \ (13.9) \\ 115,470 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4000 φV _n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) rete Lintels ³ 4000 φV _n Ib (kN)	φM _n inlb (kN·m) 60,950 (6.89 91,290 (10.3 124,520 (14.1 16,900 (13.2 170,580 (19.3 224,840 (25.4 (27.6)) φM _n inlb (kN·m)
of bars 1 1 1 2 2 2 No. of bars hear a g No. of bars	3000 \$\psi V_n\$ b (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2) 4,170 (18.6) 4,120 (18.4) [2] and Moment Cap \$\psi V_n\$ b (kN) 9,760 (43.4) 9,850 (43.8)	φM _n inlb (kN·m) 60,110 (6.79) 89,290 (10.1) 120,490 (13.6) 113,560 (12.8) 162,570 (18.4) [2] pacity for 8 x 16 in. (20.7) φM _n inlb (kN·m) 310,570 (35.1) 286,360 (32.4)	f' _c , psi 3500 ϕV_n Ib (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6) 4,500 (20.0) 4,450 (19.8) [2] (203 x 406 mm) f' _c , psi 3500 ϕV_n Ib (kN) 10,540 (46.9) 10,640 (47.3)	(MPa) (24.1) \$\phi M_n\$ inlb (kN·m) 60,590 (6.85) 90,430 (10.2) 122,790 (13.9) 115,470 (13.0) 167,150 (18.9) [2] Reinforced Concil (MPa) (24.1) \$\phi M_n\$ inlb (kN·m) 312,870 (35.4) 288,270 (32.6)	4000 φV _n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) rete Lintels ³ 4000 φV _n Ib (kN) 11,270 (50.1) 11,370 (50.6)	(27.6) \$\left(\text{M}_n\text{in. (38 mm})\text{ (27.6)}\) \$\left(\text{M}_n\text{in. (38 mm})\text{ (27.6)}\) \$\left(\text{M}_n\text{in. (38 mm})\text{ (27.6)}\text{ (4.7.6)}\) \$\left(\text{M}_n\text{in. (38 mm})\text{ (13.2}\) \$\left(\text{16,900 (13.2)}\) \$\left(\text{16,900 (13.2)}\) \$\left(\text{24,840 (25.4)}\) \$\left(\text{24,840 (25.4)}\) \$\left(\text{15 mm}\text{)\text{ (38 mm})\text{ (406 mm)}\) \$\left(\text{M}_n\text{ in. (38 mm)}\) \$\left(\text{16,mol}\text{ (38 mm)}\text{ (36 mm)}\) \$\left(\text{4.6}\text{ (16.6}\text{ (16.6} (
of bars 1 1 1 2 2 2 No. of bars hear a g No. of bars	3000 \$\psi V_n\$ b (kN) 4,170 (18.6) 4,120 (18.4) 4,080 (18.2) 4,170 (18.6) 4,120 (18.4) [2] and Moment Cap \$\psi V_n\$ b (kN) 9,760 (43.4)	ϕM_n inlb (kN·m) $60,110 (6.79)$ $89,290 (10.1)$ $120,490 (13.6)$ $113,560 (12.8)$ $162,570 (18.4)$ [2] pacity for 8 x 16 in. (20.7) ϕM_n inlb (kN·m) $310,570 (35.1)$ $286,360 (32.4)$ $430,410 (48.6)$	f'_c , psi 3500 ϕV_n lb (kN) 4,500 (20.0) 4,450 (19.8) 4,410 (19.6) 4,500 (20.0) 4,450 (19.8) [2] (203 x 406 mm) f'_c , psi 3500 ϕV_n lb (kN) 10,540 (46.9) 10,640 (47.3) 10,590 (47.1)	(MPa) (24.1) φM _n inlb (kN·m) 60,590 (6.85) 90,430 (10.2) 122,790 (13.9) 115,470 (13.0) 167,150 (18.9) [2] Reinforced Concide (MPa) (24.1) φM _n inlb (kN·m) 312,870 (35.4)	4000 φV _n Ib (kN) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) 4,810 (21.4) 4,760 (21.2) 4,710 (21.0) rete Lintels ³ 4000 φV _n Ib (kN) 11,270 (50.1) 11,370 (50.6) 11,320 (50.4)	(27.6) (2
	no. of bars hear a no. of bars 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	g No. of 3000 bars ϕV_n lb (kN) 1 2,000 (8.9) 1 1,980 (8.8) 1 1,960 (8.7) hear and Moment Cap No. of 3000 bars ϕV_n lb (kN) 1 3,070 (13.7) 1 3,040 (13.5) 2 3,110 (13.8) 2 3,070 (13.7)	9 No. of $3000 (20.7)$ bars $\phi V_n \qquad \phi M_n$ $b (kN) \qquad inlb (kN·m)$ 1 2,000 (8.9) 33,140 (3.75) 1 1,980 (8.8) 56,440 (6.38) 1 1,960 (8.7) 80,450 (9.09) 1 1,960 (8.7) 80,450 (9.09) 1 3,000 (20.7) 5 6 6 6 6 6 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	of bars ϕV_n ϕM_n ϕM_n ϕV_n $\phi V_$

^{1.} Tables based on strength design method as described in ref. 2, assuming 1.5 in. (38 mm) concrete cover and Grade 60 reinforcement, f_v = 60,000 psi (413 MPa).

^{2.} Reinforcement at listed effective depth exceeds the maximum reinforcing ratio of 0.75 $\rho_{\text{b}}.$

^{3.} When determining minimum end bearing, the bearing stress of the masonry supporting the lintel should be checked to ensure it does not exceed 0.25f'_m (ref. 1).

 f_r

 y_t

ρ

nρ

```
V_{max} = wL/2
                          (at distance "d" from support) (ref.2)
                                                                              NOTATIONS
           = [(1.7)(300)+(1.4)(186 \text{ lb/ft})](101.9/2-5.88 \text{ in.})(\text{ft/}12
                                                                              а
                                                                                        depth of equivalent rectangular stress block, in. (mm)
                                                                                        area of tension reinforcement, in.2 (mm2)
              in.)
                                                                                        actual width of lintel, in. (mm)
           = 2,893 \text{ lb} (12.9 \text{ kN})
                                                                                        distance from extreme compression fiber to neutral axis,
From Table 3, an 8 x 8 in. (203 x 203 mm) lintel with two No. 4
                                                                                        in. (mm)
(13M) bars and f'_c = 4000 psi (20.7 MPa) has sufficient strength.
                                                                              С
                                                                                 =
                                                                                       resultant compressive force in concrete, lb (kN)
                                                                                        distance from extreme compression fiber to centroid of
Check deflection: Deflection is determined using the effective
                                                                                        tension reinforcement, in. (mm)
moment of inertia of the lintel, I_e, calculated as follows (ref. 2).
                                                                              D_{b beam} =
                                                                                       dead load of bond beam, lb/ft (kN/m)
      = W_c^{1.5}33(f'_c)^{1/2}
                              = (150 \text{ pcf})^{1.5}33(4000 \text{ psi})^{1/2}
                                                                                        dead load of floor, lb/ft (kN/m)
      = 3,834,000 psi (26,400 MPa)
                                                                                        dead load of lintel, lb/ft (kN/m)
      = 7.5(f'_{c})^{1/2}
                              = 474 psi (3.3 MPa)
                                                                                        total design dead load, lb/ft (kN/m)
      = 7.625 in./2
                              = 3.81 in. (97 mm)
                                                                                        modulus of elasticity of concrete, psi (MPa)
      = bh^3/12
                              = (7.625 \text{ in.})(7.625 \text{ in.})^3/12
                                                                                        specified compressive strength of concrete, psi (MPa)
                                                                                        modulus of rupture of concrete, psi (MPa)
      = 282 in.4 (11,725 cm4)
                                                                                        specified yield strength of reinforcement, psi (MPa)
      = f_{t}J_{s}/y_{t}
                  = 474 psi(282 psi)/3.81 in.
                                                                                        (60,000 psi, 413 MPa)
      = 35,083 in.-lb (4.0 kN·m)
                                                                                        moment of inertia of cracked section transformed to
M_{max\,uf} = wL^2/8 = [(300+186 \text{ lb/ft})(101.9 \text{ in.})^2/8](\text{ft/}12 \text{ in.})
                                                                                        concrete, in.4 (cm4)
      = 52567 in.-lb (5.9 kN·m)
                                                                                        effective moment of inertia, in.4 (cm4)
(M_{cl}/M_{max,uf})^3 = (35,083/52567)^3 = 0.297
                                                                                        moment of inertia of gross concrete section about
      = E/E_{\perp} = 29,000,000/3,834,000 = 7.6
                                                                                        centroidal axis, in.4 (cm4)
      = A_s/bd = 0.40 \text{ in.}^2/(7.625 \text{ in.})(5.88 \text{ in.}) = 0.00892
                                                                                        effective length, clear span plus depth of member, not
     = 7.6(0.00892) = 0.0678
                                                                                        to exceed the distance between center of supports, in.
      = n\rho d[(1 + 2/n\rho)^{1/2} - 1]
                                                                                        (mm)
                                                                              LL =
      = 0.0678(5.88 \text{ in.})[(1+2/0.0678)^{1/2}-1] = 1.80 in. (45 mm)
                                                                                        live load, lb/ft (kN/m)
                                                                                        cracking moment, in.-lb (kN·m)
      = bc^3/3 + nA_a(d-c)^2
                                                                                        maximum factored moment on section, in.-lb (kN·m)
      = 7.625 \text{ in.} (1.8 \text{ in.})^3/3 + 7.6(0.4 \text{ in.}^2)(5.88 - 1.8)^2
                                                                                       maximum unfactored moment on section, in.-lb (kN·m)
      = 65.4 in.4 (2714 cm4)
                                                                                        nominal moment strength, in.-lb/ft (kN·m/m)
      = (M_{cr}/M_{max\,uf})^3 I_q + [1 - (M_{cr}/M_{max\,uf})^3] I_{cr}
                                                                                        modular ratio, E/E
      = 0.297(282) + [1-0.297]65.4 in.4
                                                                              Τ
                                                                                        resultant tensile force in steel reinforcement, lb (kN)
      = 130 \text{ in.}^4 (5411 \text{ cm}^4) < I_a \text{ OK}
                                                                                        maximum factored shear on section, lb (kN)
For a simply supported beam under uniform load,
                                                                                        nominal shear strength, lb (kN)
\Delta_{max} = 5wL^4/384E_{J_2}
                                                                                        uniform load, lb/in. (kN/m)
      = 5(300 + 186 \text{ lb/ft})(101.9 \text{ in.})^4/[384(3,834,000 \text{ psi})(130 \text{ lb/ft})]
                                                                              W_c
                                                                                        density of concrete, pcf (kN/m<sup>3</sup>)
         in.4)]/(12 in./ft)
                                                                                        distance from centroidal axis of gross section to extreme
      = 0.114 in. (2.9 mm)
                                                                                        fiber in tension, in. (mm)
                                                                                        maximum immediate deflection, in. (mm)
Long-term deflection multiplier,
                                                                                        long-term deflection, in. (mm)
      = \xi/(1+50\rho') = 2/[1+50(0)] = 2
                                                                                        total deflection, in. (mm)
Long-term deflection,
                                                                                        strain in concrete, in./in. (mm/mm)
\Delta_{LT} = \lambda \Delta_{max} = 2(0.114 \text{ in.}) = 0.228 \text{ in.} (5.8 \text{ mm})
                                                                                        strain in steel reinforcement, in./in. (mm/mm)
Total deflection,
                                                                                        time-dependent factor for sustained load
\Delta_{tot} = \Delta_{max} + \Delta_{LT} = 0.114 + 0.228 = 0.342 \text{ in. (8.7 mm)}
                                                                                        multiplier for additional long-term deflection
                                                                              λ
Deflection limit for this case is L/240 = 101.9 in./240
                                                                                        strength reduction factor
      = 0.42 \text{ in. } (10.7 \text{ mm}) > 0.342 \text{ in. } (8.7 \text{ mm}) \text{ OK}
                                                                                       reinforcement ratio, A /bd
                                                                              ρ
                                                                              ρ'
                                                                                       reinforcement ratio for nonprestressed compression
```

 ρ_b

 $\rho_{\textit{max}}$

reinforcement ratio producing balanced strain conditions

reinforcement, A //bd

limit on reinforcement ratio

REFERENCES

- Building Code Requirements for Masonry Structures, ACI 530-99/ASCE 5-99/TMS 402-99. Reported by the Masonry Standards Joint Committee, 1999.
- 2. Building Code Requirements for Structural Concrete, ACI 318-99. American Concrete Institute, 1999.
- ASD of CM Lintels Based on 2012 IBC/2011 MSJC, TEK 17-01D, Concrete Masonry & Hardscapes Association, 2011.

ABOUT CMHA

The Concrete Masonry & Hardscapes Association (CMHA) represents a unification of the Interlocking Concrete Pavement Institute (ICPI) and National Concrete Masonry Association (NCMA). CMHA is a trade association representing US and Canadian producers and suppliers in the concrete masonry and hardscape industry, as well as contractors of interlocking concrete pavement and segmental retaining walls. CMHA is the authority for segmental concrete products and systems, which are the best value and preferred choice for resilient pavement, structures, and living spaces. CMHA is dedicated to the advancement of these building systems through research, promotion, education, and the development of manufacturing guides, design codes and resources, testing standards, and construction practices.

Disclaimer:

The content of this CMHA Tech Note is intended for use only as a guideline and is made available "as is." It is not intended for use or reliance upon as an industry standard, certification or as a specification. CMHA and those companies disseminating the technical information contained in the Tech Note make no promises, representations or warranties of any kind, expressed or implied, as to the accuracy or completeness of content contained in the Tech Note and disclaim any liability for damages or injuries resulting from the use or reliance upon the content of Tech Note. Professional assistance should be sought with respect to the design, specifications, and construction of each project.