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Introduction� 1

SECTION 1
INTRODUCTION 

Section 1.1:  Purpose and Scope of Manual

This design manual (third edition) was produced by the National Concrete Masonry Association (NCMA) to provide 
a standardized engineering approach for the analysis and design of segmental retaining walls (SRWs). The first edition 
of the manual was published in 1993 and the second edition was published in 1997 [Ref. 64].  In 1998, a companion 
manual, Segmental Retaining Walls—Seismic Design Manual, was published [Ref. 57].  In 2002, a second companion 
manual, Segmental Retaining Wall Drainage Manual was published [Ref. 65].  This third edition of the Design Manual 
has incorporated the Drainage Manual and Seismic Design Manual recommendations into one document. 

A segmental retaining wall is constructed from dry-stacked units (without mortar) that are usually connected through 
concrete shear keys or mechanical connectors.  SRW units are dry-cast machine produced.  A variety of proprietary 
SRW units are available from NCMA members.

The purpose of this manual is to provide generic design guidelines for segmental retaining walls constructed as 
gravity structures and as geosynthetically reinforced soil segmental retaining walls. Reinforced SRW systems are 
composite-facing, mechanically stabilized earth (MSE) retaining wall structures that have unique features and design 
requirements that are addressed in detail in this design guideline.  This manual provides design guidelines and 
engineering procedures necessary to produce safe, cost effective retaining wall structures.  The design methodologies 
contained in this manual allow the engineer to analyze the influence of all components of the SRW system on 
wall performance; in addition the manual covers the design considerations associated with surface and subsurface 
drainage. In addition to subsurface water management, the proper design of surface water control structures and 
diversion are important design considerations.  The guidelines presented in this manual have been developed to 
assist the designer in reducing the potential for surface or ground water from negatively impacting an SRW.

The theories presented in this manual offer the designer the methods to quantify performance of retaining wall 
structures built with segmental concrete facing units, geosynthetic reinforcement and soils.

Section 1.2:  Organization of the Manual

The organization of the manual is presented below:

Section 1 discusses the history of the development of this manual, the need for the manual, the history and advantages 
of SRWs, and the scope of the manual.

Section 2 introduces the components of an SRW (i.e., SRW units, leveling pad, geosynthetic reinforcement, reinforced 
and retained fill, and drainage materials) and their engineering properties. Section 2 also provides a general overview 
of SRWs, the basic design concepts and the engineering information (i.e., surcharge load, groundwater elevation, 
etc.) required for design.

Section 3 discusses the roles of parties involved in the design and construction of  SRWs. 

With the aid of an example, Section 4 provides a step-by-step approach to laying out a retaining wall.

Section 5 provides a general overview of SRWs, the basic design concepts and the engineering information (i.e., 
surcharge load, groundwater elevation, etc) required for design. A discussion on Coulomb earth pressure theory is 
also provided in Section 5.
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Section 6 presents the design methodology for conventional gravity SRWs (SRWs without geosynthetic 
reinforcement). The minimum recommended factors of safety for global, external and internal stability are provided 
as well as the design steps necessary to determine these factors of safety.

Section 7 provides in depth coverage of the design of geosynthetically reinforced SRWs. This section presents an 
overview of the design methodology and the design assumptions. Recommended minimum factors of safety for the 
design and design criteria are covered as well. The determination of external, internal, and local facing stability, as 
well as compound and global stability are covered in this section.

Section 8 describes the internal compound stability method of analysis for geosynthetic reinforced segmental 
retaining walls.

Section 9 describes a method of analysis and design for conventional (gravity) and geosynthetic reinforced segmental 
retaining walls under seismic loading conditions.

Section 10 discusses the design of drainage features including the soil and geotextile filter design and evaluation of soil 
permeability.  Subsurface drainage design considerations at the back of the reinforced soil mass in geosynthetic reinforced 
SRWs and the drain directly behind the SRW units for both conventional and reinforced SRWs are all discussed.

Section 11 discusses the responsibilities of the site civil engineer. 

Section 12 discusses the responsibilities of the geotechnical engineer.

Section 13 deals with construction of SRWs and provides guidance on preparation of construction drawings, 
detailing, and construction tolerances.

Section 14 provides example specifications for a Material (Method) Specification and an End Result (Performance) 
Specification. The traditional material specification or method specification approach requires that a site specific 
design be performed by the owner’s engineer. The end result specification can be used to solicit proposals from 
various segmental retaining wall suppliers using a “line and grade” or systems approach. 

Appendix A and B present example calculations for the design of both a conventional (gravity) and geosynthetic 
reinforced SRW.

Appendix C, Determination of Allowable Geosynthetic Design Strength, Ta of Geosynthetic Soil Reinforcement 
discusses the procedure to determine the allowable geosynthetic design strength (Ta) for SRW design. This procedure 
has been adapted from the US Department of Transportation – FHWA Publication No. FHWA NHI-00-043 DP 82-1 
Mechanically Stabilized Earth Walls and Reinforced Soil Slopes—Design and Construction Guidelines [Ref. 58].

References lists the references used in the development of this manual.

Section 1.3:  Design Philosophy

The design concepts presented in this manual are based on conventional engineering principles and experience with 
the design and construction of thousands of SRW structures in North America over the past 20 years [Refs. 30-35, 
41-42].  This manual assumes that the designer is familiar with basic soil mechanics and principles of engineering 
mechanics.  The analysis and design of a gravity or reinforced SRW can be carried out in a systematic, step-by-step 
process using the methodologies presented herein available through the Design Software for Segmental Retaining 
Walls, SRWall (Version 4.0) [Ref. 69] .  The computations associated with each step in the design and analysis 
procedures in this manual lend themselves to implementation within user-friendly computer software.
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This manual provides the designer with many options (i.e., drainage systems) to reduce or eliminate the build-up 
of hydrostatic forces within an SRW.  For cases when this objective is not achievable, guidance is provided on the 
design of SRWs when hydrostatic forces are present. The designer must engineer the SRW and apply the options 
and design guidance that are appropriate to the specific application.

This manual also provides design standards and engineering guidance to assist the designer in selecting appropriate 
performance criteria for a project.  The manual also identifies key components of a SRW system and their functions, 
as well as important construction techniques for satisfactory performance in the field.  A set of generic specifications 
are provided to assist the architect/engineer to develop accurate and complete project-specific contract documents.

The design methodologies and other recommendations contained in this manual provide a common basis for the 
development of design charts and specifications by manufacturers and suppliers of products used in the construction 
of SRW systems.  The benefit of the single “consensus” design approach presented in this manual is greater 
understanding, confidence, and acceptance of SRW systems by design and construction professionals.

Section 1.4:  History of Segmental Retaining Wall Use

SRW designers should appreciate the history of mechanically stabilized earth (MSE) wall design in the United States.  
MSE walls were introduced in U.S. highway construction in the 1970s.  State departments of transportation (DOT) 
specified walls constructed with granular wall fill soils, performed subsurface investigations along the proposed 
wall alignment, designed surface water control features, coordinated design and construction of the wall structure 
with other project features, and provided a high level of construction observation (or inspection).  DOTs typically 
specified MSE walls with a line and grade approach, and wall vendors supplied the design, facing panel elements 
and soil reinforcement elements to the contractor.  The design was, and still is, typically limited to:  (i) internal wall 
stability and (ii) external wall stability, and did not include global stability or surface or subsurface drainage design 
and detailing.  The latter were provided by the DOT, owner or specifier.

Application of MSE walls and slopes was primarily limited to highway works and very large industrial and commercial 
works until the advent of SRWs in the mid-1980s.  SRW applications initiated then and today are primarily used for 
residential, commercial and industrial applications (though highway applications are growing at a rapid rate).

The historically typical line and grade specification for MSE design is often applied to SRWs for residential, 
commercial and industrial applications.  The design and construction of such projects, however, typically varies 
significantly from highway projects.  The SRW designer should recognize and address these variations.

Unlike DOT projects, private works may have several firms designing different features (e.g., site plan, buildings, 
foundations, SRWs, landscaping, etc.) of a project.  Furthermore, there may be several contractors reporting to a 
construction manager that are constructing different features (e.g., site grading, buildings, paving, landscaping, 
SRW, etc.).  Design integration and contractor coordination of several features can be troublesome for some 
projects–particularly when dealing with surface water runoff.

Ideally, the SRW designer is an active member of the design team working with the owner and other design 
professionals to assure that the final design is well integrated between all consultants. 

Section 1.5:  Advantages of Segmental Retaining Walls

SRWs offer several important advantages over other soil retaining wall systems.
●● Performance:  SRWs are relatively flexible structures that are typically founded on flexible aggregate 

leveling pad foundations.  SRWs are dry-stacked systems that can generally tolerate movement and 
settlement without causing significant structural distress at the face because the SRW units may move 



4� Design Manual for Segmental Retaining Walls 3rd Edition 

and adjust relative to each other.  This contrasts with more rigid retaining structures such as cast-in-place 
concrete and conventional mortared masonry walls.

●● Design Flexibility:  SRW units offer the site designer flexibility with respect to retaining wall location, wall 
layout, height, and constructability.  The typical small size and weight of SRW units permits the construction 
of walls in difficult access locations.  SRW units offer the designer the ability to incorporate tight curves or 
corners at a site and satisfy other complex architectural layouts.

●● Face Drainage: The dry-stack construction method used in SRW construction permits water to readily 
drain through the wall face.  This “draining” action aids in preventing the development of hydrostatic 
pressure behind the SRW units.

●● Ease and Rate of Installation:  SRW units have been designed for rapid and easy installation. Many 
SRW units on the market can be placed by a single construction worker without the aid of construction 
equipment.  The mortarless construction allows installation to proceed quickly. An experienced installation 
crew of three or four typically erect 300 to 500 sq. ft (91 to 152 sq. m) of wall per day.  This minimizes the 
impact of retaining wall construction on project scheduling and shortens overall site construction time.

●● Economics:  SRWs offer one of the best values in earth retaining wall systems. SRWs are cost-effective, 
aesthetically pleasing, earth retaining structures that typically offer a twenty-five percent to forty percent 
cost advantage over conventional cast-in-place concrete retaining walls.  Furthermore, SRWs may offer a 
capital cost advantage over other proprietary retaining wall systems.   When all project costs are measured 
and compared against performance benefits, SRWs are often the best value for construction dollars spent.

●● Durability:  SRW units are manufactured from dry-cast, machine-formed concrete that creates durable 
and long-lasting retaining wall systems.  SRW units are resistant to cracking and do not splinter or decay 
like treated timbers or railroad ties. Segmental units utilize high compressive strength and low absorption 
concrete to resist spalling and freeze/thaw effects that has made conventional masonry blocks a durable 
building product for foundation and retaining walls for many years

Additionally, the geosynthetic reinforcement used to stabilize the soil behind SRW units is manufactured 
from specially formulated polymers engineered to resist creep and environmental degradation throughout 
the design life of the structure.  By implementing the design procedures outlined herein and provided in 
other references, a safe working strength for the geosynthetic reinforcement can be determined for a design 
life ranging 75 to 100 years.

●● Ecologically Friendly:  Concrete SRW units are an ecologically safe building material.  SRW units are 
manufactured from naturally occurring materials that are in abundant supply and extracted with minimal 
environmental impact.  Chemical preservatives (creosote, nickel/arsenic) used in treated timbers and 
railroad ties are not required for SRW units.

●● Aesthetics: SRW units come in a variety of colors, shapes, styles and configurations and therefore provide 
architects, owners and engineers with a wide choice of aesthetically pleasing wall textures and appearances.  
The ability to match and complement other building materials such as brick, masonry, and stucco allows SRW 
units to visually enhance a project.  The use of split-face SRW units provides an architectural appearance 
that is superior to the gray, drab, monotony of conventional cast-in-place concrete retaining walls. 

●● Seismic Performance: The performance of mechanically stabilized earth walls (i.e., SRWs) during seismic 
events is excellent. Review of the performance of numerous SRW after earthquakes has shown that they are more 
robust than conventional retaining walls under seismic loading when properly designed for seismic loads. 

Section 1.6:  Summary of Changes Incorported into 3rd Edition

As discussed in Section 1.1, the third edition of the Design Manual for Segmental Retaining Walls incorporates the 
design recommendations of the Segmental Retaining Walls Seismic Design Manual [Ref. 57], Segmental Retaining 
Wall Drainage Manual [Ref. 65] and the second edition of the Design Manual for Segmental Retaining Walls [Ref. 
64] into one document. 
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In addition, there are several technical changes that have been made to this third edition of the manual with respect 
to the previous editions. These changes include the deletion of the hinge height concept, the bulging calculation 
at the face of the wall, and the serviceability requirements for connection strength between the geosynthetic 
reinforcement and SRW units. Research over the last decade has demonstrated that the concept of hinge height 
does not realistically predict the vertical load on an SRW unit within a wall. Friction that develops between the 
reinforced soil and SRW unit effectively transfer vertical load to the SRW units equivalent to the height of the wall 
above the unit regardless of hinge height. The bulging calculation presented in the previous editions of the manual 
does not model the failure mechanism associated with bulging of the SRW. This edition of the manual has replaced 
the previous bulging calculation with the more rigorous internal compound stability analysis that models the 
actual failure mechanism when bulging occurs.  The serviceability requirements for connection strength have been 
eliminated from the recommendations provided herein. When following the construction guidelines provided in this 
manual the connection between the SRW unit and geosynthetic reinforcement is tensioned during construction. This 
tensioning eliminates the serviceability issue for currently available combinations of SRW units and geosynthetic 
reinforcements. If in the future more flexible reinforcements are used to build SRWs the serviceability requirement 
provided in the second edition of the manual may be appropriate. 

Finally, research has revealed that the inverted trapezoidal seismic load distribution as found in Seismic Design 
Manual for Segmental Retaining Walls  [Ref. 57] is extremely conservative.  Current research [Ref. 68] indicates 
that retaining walls with extensible reinforcement do not behave in the manner described in the Seismic Design 
Manual for Segmental Retaining Walls.  Based on this research, a more realistic rectangular load distribution is used 
in this combined, third edition manual.  Additional discussion of this topic can be found in Section 9.
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SECTION 2
SEGMENTAL RETAINING WALL COMPONENTS

The major components of conventional and reinforced soil SRWs are shown in Figure 2-1.  This section is focused 
on the mechanical properties and engineering performance of these SRW components.  

Conventional gravity SRWs are comprised solely of SRW units, leveling pad, gravel fill, and retained soil (Figure 
2-1A).  All destabilizing forces must be resisted by the weight of the stacked SRW units and the shearing resistance 
developed at the top and bottom surface of each unit.  The effective width and weight can be increased using a 
multiple depth SRW system, though this is not fully addressed herein.

Compacted/natural 
retained soil

Gravel fill leveling pad

Architecturally 
treated face
Shear connector
or
Shear key

A.  Conventional SRW

Single depth

B.  Reinforced Soil SRW

Shear connector
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reinforcement

Compacted/natural 
retained soil
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reinforced 
(infill) soil
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W

UH UL

W
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Multiple depth

Figure 2-1:  Segmental Retaining Wall Systems
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For reinforced soil SRWs, the units function primarily as a facing system to control the local stability at the front of 
the structure of the geosynthetically reinforced soil mass (Figure 2-1B).   

The description of principal components in conventional gravity and reinforced soil SRW systems shown in Figures 
2-1 and 2-2 are:

●● Segmental Retaining Wall Units: Dry-stacked column of concrete units that create the mass of conventional 
SRW structures and provide mass and structural stability at the face of reinforced soil SRW structures.

●● Gravel Fill: Free-draining, coarse grained aggregates placed in the cores and between the SRW units 
extending 12 in. (305 mm) behind the tail of the units. The gravel fill acts as a compaction aid to reduce 
horizontal compaction stresses on the back of the SRW units during construction and to facilitate drainage 
at the face of the wall by intercepting incidental water and thereby relieve hydrostatic pressure or seepage 
forces.  This is not meant to be a primary drainage path for typical applications.

●● Reinforced Soil: Compacted structural fill placed behind the SRW units to the tail end of the reinforcement. 
During stability calculations for reinforced soil SRW structures, SRW units and reinforced soils are treated 
as a single homogeneous zone contributing to the mass and width of the structure to simplify external 
stability calculations. 

●● Retained Soil: Soil immediately behind the reinforced soil in reinforced soil SRW systems or soil 
immediately behind the gravel fill or SRW in conventional gravity SRW systems.

●● Foundation Soil: Soil mass supporting the leveling pad and the reinforced (infill) soil zone of a reinforced 
soil SRW system. 

●● Leveling Pad: Level surface (gravel or concrete) used to distribute the weight of the dry-stacked column of 
SRW units over a wider foundation area and to provide a working surface during construction. 

Section 2.1:  Segmental Retaining Wall Units

The structural integrity of a dry-stacked column of segmental retaining wall units is achieved by incorporating 
shear connections in the form of shear keys, leading/trailing lips, pins/clips, or through friction. These connection 
devices increase the shear capacity of the interface between successive courses of SRW units, which are generally 
stacked in a running bond configuration.  Some connectors are also used to control the horizontal setback for 
successive segmental unit courses and therefore assist in maintaining a constant wall facing batter (ω) (Figure 2-2).  
Typical facing batter angles are 1° to 15° from vertical. (All wall batter angles are positive when rotated towards the 
reinforced soils.)  The connectors also assist to align and hold geosynthetic reinforcement materials in place. 

Segmental units also provide the following:  
●● Formwork - The segmental units provide a construction formwork to place and compact soil in the soil 

zone immediately behind the units.
●● Facing Stability - Segmental units provide permanent local support to the vertical or near-vertical soil mass 

behind the units to prevent soil from ravelling out or eroding. Additionally, the segmental units protect the 
retained soil zone from erosion due to flowing water or scour from adjacent creeks or streams.

●● Aesthetics - Segmental units offer architectural treatment and appearance that enhances the environment 
surrounding the SRW.

Segmental retaining wall units come in a variety of sizes and shapes.  The dimensions, unit weight and connection 
performance must be carefully evaluated during the design of the SRW system.
		

2.1.1:  Dimensions

The physical dimensions of segmental units are defined below as illustrated in Figures 2-1 and 2-2:
●● Height - (Hu) The vertical dimension of a segmental unit in place, ft (m).
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●● Length - (Lu) The horizontal dimension of a segmental unit as viewed while observing a completed wall 
from the front, ft (m).

●● Width - (Wu) The horizontal dimension of a segmental unit from front to back.  This dimension will appear 
as a nominal width on a standard cross-section drawing, ft (m).

●● Weight - (γu) The weight per unit volume of segmental units as placed including drainage fill in and between 
the segmental units, if applicable, pcf (kN/m3).

●● Setback - (∆u ) The horizontal distance (toe to toe) that each SRW unit course is displaced from the course 
below, in.  [Note: Positive distance into infill soils.]

●● Facing Batter - (ω) The equivalent uniform facing angle that is created by a SRW setback.  The facing 
batter is measured with respect to a vertical line drawn from the toe of the lowermost SRW unit (deg).  
[Note: Positive inclination into infill soils.]

●● Center of Gravity - (Gu) The horizontal distance from the front face of a SRW unit to the point of application 
of the weight the SRW unit including unit fill in a free-body diagram, ft (m).  [Note: Gu in vertical direction 
assumed to be Hu /2 for all equations.]

2.1.2:  Mix Design, Compressive Strength and Dimensional Tolerances 

Recommendations for minimum compressive strength, maximum water absorption, manufacturing tolerances, and 
finish and appearance of SRW units are contained in ASTM C 1372 Standard Specification for Dry-Cast Segmental 
Retaining Wall Units [Ref. 67].   The job site acceptance or rejection of SRW units can be made on the basis of these 
physical properties and the requirements for finish and appearance, all of which should be incorporated into the job 
site specification.

The compressive strength requirements for SRW units in ASTM C 1372 are governed by the durability requirements of 
a particular application (installation) and/or the stress transfer requirements between successive courses.   Historically, 
the freeze/thaw resistance and durability of concrete masonry is demonstrated through more than 50 years of satisfactory 
performance in foundation and retaining walls. During the early use of SRW units (early 1990’s) however, the freeze/
thaw durability of SRW units when exposed to de-icing salts was an issue. Extensive research has been conducted on 
freeze/thaw durability over the last 20 years. Compressive strength and water absorption are two physical properties of 
the no-slump concrete used to make SRW units that have been related to freeze/thaw resistance [Ref. 40].  The required 
values for these properties are intended to provide a durable unit for in field service.  The freeze/thaw resistance of 
segmental retaining wall units is affected by temperature cycles, exposure conditions, and moisture content of the 
units, and many other factors, [Ref. 49].  ASTM C 1372 provides requirements for freeze/thaw durability in geographic 
areas where repeated freezing and thawing under saturated conditions occur. The drainage details presented in this 
manual will also help to minimize the moisture content of the units by allowing water to drain freely to the discharge 
pipe at the base of the wall.  In some weathering regions and for some exposure conditions (i.e., along a highway where 
units may be in contact with de-icing salts), higher standards than the minimum value presented in ASTM C 1372 may 
be necessary to provide additional durability resistance in aggressive environments.
 
ASTM C 1372 indicates the manufacturing tolerance on any molded dimension of an SRW unit is ± 1/8 in. (3 mm).    

2.1.3:  SRW Performance Properties

The unique shape of each SRW unit directly affects its ability to function in retaining wall applications.  Most 
significant is the mechanism utilized to transfer stress to the units above and below it.

The various methods to create shear connections between successive vertical courses of segmental units are: 
●● Built-in mechanical concrete interlock - These SRW units have a positive, built-in mechanical interlock 

that is an integral part of the segmental unit shape.  Examples of this positive mechanical interlock are shear 
keys and leading/trailing lips.
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●● Mechanical connectors - The specially manufactured connectors that link successive vertical courses of 
units together may be designed as a mechanical interlock to provide additional shear capacity, and are also 
used to assist with unit alignment and control the wall facing batter during wall construction.  Examples of 
mechanical connectors are pins, clips, or wedges.

●● Frictional interface - This type of SRW unit develops shear capacity through interface friction.  

These principal methods of connection can be augmented with unit fill. SRW unit cavities filled with gravel fill can 
develop significant shear resistance through gravel to gravel and gravel to unit interlock.

The shear capacity (Vu ) between segmental courses generated by these connections is an important parameter in the 
stability analysis of both conventional and reinforced soil SRWs.  The magnitude of Vu will be a function of wall 
height, unit type, infill, and in reinforced soil SRWs, the properties of any geosynthetic reinforcement layer that may 
be present between courses of SRW units.  Similarly, the connection strength (Tconn ) developed between the SRW 
unit and geosynthetic reinforcement may control the design of reinforced soil SRWs.  Appropriate values for Vu and 
Tconn used in design can only be established from the results of large-scale testing of the connection detail in SRW 
systems (ASTM D 6638 Standard Test Method for Determining the Connection Strength Between Geosynthetics 
Reinforcement and Segmental Concrete Units [Ref. 70] and ASTM D 6916 Standard Test Method for Determining 
the Shear Strength Between Segmental Concrete Units [Ref. 71]).

The magnitude of Vu and Tconn calculated from full-scale test results are compared to the actual applied force for each 
specific SRW unit elevation or geosynthetic reinforcement layer during design computations.  The shear capacity 
and connection strength must be greater than the applied loads by the minimum required safety factors. 

2.1.3.1:  Connection Strength between Geosynthetic Reinforcement and SRW Units

The procedure to quantify the connection strength between a geosynthetic and SRW units is given in ASTM 
D 6638 Standard Test Method for Determining the Connection Strength Between Geosynthetics Reinforcement and 
Segmental Concrete Units.
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Figure 2-4:  Typical Shear Capacity Performance Properties for SRW Unit and Geosynthetic Reinforcement

The purpose of a test performed in accordance with ASTM D  6638 is to establish the connection strength of 
segmental concrete units to a geosynthetic reinforcement layer for a given surcharge pressure applied normal to the 
connection interface.  A series of tests are conducted to establish a relationship between facing connection strength 
and height of stacked segmental units defined by a Mohr-Coulomb failure criterion over a representative range of 
surcharge pressures. The surcharge pressures used in the test must cover the range of normal interface pressures 
anticipated in the proposed structure. This test is intended to be a performance test, since variations in segmental 
unit shape and geosynthetic strength/configuration will affect the results.  Equivalent Mohr-Coulomb failure criteria 
parameters acs and λcs determined through full-scale testing can then be used by the designer to calculate the ultimate 
connection strength over the full face height of the wall.  Typical relationships for connection strength performance 
are illustrated in Figure 2-3.  

2.1.3.2:  Determination of Shear Strength Between SRW Units

The procedure to quantify the shear strength between SRW units is given in ASTM D 6916 Standard Test Method for 
Determining the Shear Strength Between Segmental Concrete Units. The purpose of a test performed in accordance 
with ASTM D 6916 is to measure the shear strength between segmental concrete units for a given pressure applied 
normal to the unit interface.  A series of tests are carried out to establish a relationship between interface shear 
strength and height of stacked segmental units defined by a Mohr-Coulomb failure criterion over a representative 
range of normal loads.  The normal pressures used in the test must cover the range of normal interface pressures 
anticipated in the proposed structure. This test is intended to be a performance test, since variations in segmental 
unit shape and geosynthetic strength/configuration will affect the results.  Equivalent Mohr-Coulomb strength 
parameters au and λu determined through full-scale testing can then be used by the designer to calculate the shear 
strength over the full face height of the wall.  Typical relationships for shear capacity performance are illustrated in 
Figure 2-4.    

The full scale performance test described in ASTM D 6916 is meant to provide shear capacity for segmental units 
with and without geosynthetic reinforcement.  The results of this testing is directly applicable to the analysis and 
design of both conventional and soil-reinforced SRWs.  
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Section 2.2:  Leveling Pads

A compacted aggregate leveling pad is recommended for conventional and reinforced soil SRW structures 
(Figures 2-1 A and B). The purpose of a leveling pad is to provide a level surface to facilitate placement of the first 
course of units. Unreinforced concrete may also be used as a leveling pad.

The compacted granular leveling pad should be constructed using GP, GW, SP or SW (see Table 2-2) soil types 
for optimum stress distribution. The leveling pad should be densely compacted.  Alternatively, thin/weak concrete 
leveling courses may be poured above the compacted leveling pad to speed construction.  The leveling pad should 
not be less than 6 in. (152 mm) thick.  The leveling pad should extend laterally at least a distance 6 in. (152 mm) 
from the toe and heel of the lowermost SRW unit. 

In situations where gravity flow of the wall underdrain is unattainable, the leveling pad may be constructed of a 
densely-graded, impermeable soil to preclude saturation; the drain pipe is then located at the toe of wall above the 
finish grade.

Section 2.3:  Gravel Fill and Drainage Materials

Whenever possible water should be directed away from SRWs, however, when water does reach a SRW, proper 
drainage components should be provided to avoid erosion, migration of fines, and hydrostatic pressure on the wall.  
Drainage features of the SRW will depend on site specific groundwater conditions.  The engineer that designs the 
wall has the responsibility of providing adequate drainage features to collect and evacuate water that may potentially 
seep at the wall.  The civil site engineer is typically responsible for the design of surface drainage structures above 
and behind the wall and the geotechnical engineer is typically responsible for foundation preparation and subsurface 
drainage beneath a wall. Section 10 addresses in detail the drainage features and materials required for SRW design 
while the basic drainage components directly within or around SRWs are introduced in the following discussion.

The drainage features that form part of the SRW design are as follows:
●● Gravel fill (formerly known as the drainage aggregate) 12 in. (305 mm) thick should be provided behind the 

SRW units (see Figure 2-2) regardless of the unit type. The recommended gradation requirements for the 
gravel fill are addressed in Section 2.4.3.

Figure 2-5:  SRW with and without Gravel Fill
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●● Drain pipe;
●● Geotextile filter/separator;
●● Blanket drain;
●● Chimney drain, and;
●● Drainage swale.

Except for the gravel fill, the decision to employ one or all of the drainage features mentioned will depend on site 
specific groundwater conditions, or, if a specifying agency requires it regardless of the site conditions. 

The gravel fill, which should be part of all SRW designs, fulfills the following roles:
●● Facilitates compaction of fill directly behind the SRW units.
●● Prevents the build up of hydrostatic pressures from incidental water behind the face of the wall. 
●● Prevents retained soils from washing through the face of the wall.
●● Minimizes “downdrag movement” behind the modular concrete block (Figure 2-5).  These forces may 

contribute to the shearing of reinforcement elements directly behind the concrete block.

Section 2.4:  Soils

The soil materials within and adjacent to a SRW will typically exert the greatest influence on the final design of the 
structure. For a given wall height and geometry, the properties of the retained soils will often control the choice of 
a conventional SRW or a reinforced soil SRW system.  The soils selected for placement immediately behind the 
facing units in reinforced soil SRW construction are a principal structural component of these systems.  The design 
challenge is to match the soil properties, segmental unit properties and geosynthetic reinforcement to obtain an 
optimized design. 

This section of the manual provides an overview of some of the soil materials and properties used in the design 
and construction of SRWs.  A more thorough discussion of geotechnical engineering requirements is provided in 
Section  3.3.  The reader is directed to the list of references for textbooks on soil mechanics principles [Refs. 8, 17, 
20, 23-25] for a more complete explanation and details on soil properties and behavior.

A key economic advantage of SRW systems is that on-site soils can usually be used. This minimizes the costs 
associated with importing fill materials and/or removing excavated materials.  Provided that groundwater conditions 
at a site are controlled by the recommendations given earlier in the manual, a wide variety of soil types become 
candidate materials for the infill soil in the reinforced soil zone.  
		
For example, while cohesionless free draining materials (less than 10% fines) are preferred, soils with low plastic 
fines (i.e., CL, ML, SM, SC with PI ≤ 20) may be used for SRW construction provided the following four additional 
design criteria are implemented:

●● Proper internal drainage is installed (Section 2.3).
●● Only soils with low to moderate frost heave potential are utilized, see Table 2-1.
●● The cohesive shear strength parameter (c), for the reinforced fill, is ignored for stability analysis.
●● The final design is checked by a qualified geotechnical engineer to ensure that the use of cohesive soils does 

not result in unacceptable time-dependent movement of the SRW system.

The advantage of granular soil fills are:
●● Easier to place and compact.
●● Higher permeability which assists drainage.
●● Greater shear strength, which reduces applied stress.
●● Settlement of granular soils happens much more quickly than fine grained soils.
●● Generally less susceptible to creep.
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Table 2-1:  Frost Susceptibility of Soils [Refs. 51, 52]

Frost Heave Potential Soil Characteristics

High SM, ML, OL and CL with PI<12

Moderate GM, GC, CL with PI>12, CH, OH, SC

Low GW, GP, SW, SP and PT

NOTE:  MH, CH, OH, OL, and Peat Soil Types not recommended for SRW construction.

2.4.1:  Soil Classification 

The Unified Soil Classification System (USCS) is commonly used to classify soils and is based on a dual letter 
system. The advantage of the system is that soils falling into a classification group can be expected to have similar 
engineering properties [Ref. 28].  Classification can often be based on visual inspection and/or from the results of a 
number of relatively simple laboratory tests.

There are four main divisions in the USCS:
●● COARSE-GRAINED soils identified as gravel (G) or sand (S) are classified on the basis of grain size 

distribution recognizing that the properties of these materials are not influenced by moisture content. These 
materials have less than 50% by weight of the sample passing the #200 sieve (0.75mm particle diameter).

●● FINE-GRAINED soils identified as silts (M) or clay (C) are classified on the basis of particle size and 
plasticity (defined by Atterberg Limits) recognizing that properties of these soils are influenced by moisture 
content. These materials have greater than 50% by weight of the sample passing the #200 sieve (0.75 mm).

●● ORGANIC soils (O) are those soils whose solid constituents consist predominantly of vegetable matter in 
various stages of decomposition.

●● PEAT (PT) soils are organic soils which have high natural water content (50 to 2,000 %), high void ratio 
(normally 5-15 but may be as high as 25), and large compressibility. 

The Unified Soil Classification System is illustrated in Table 2-2 and 2-3.  Table 2-4 shows typical soil groups and 
their properties as they relate to engineered fills.  Table 2-1 shows frost susceptibility of soils.

2.4.2:  Soil Shear Strength

The conventional approach in geotechnical engineering is to describe the shear strength of a soil using a Mohr-Coulomb 
failure criteria.  The Mohr-Coulomb failure criteria relates the normal stress acting on an internal soil failure plane to 
the peak shearing resistance that is available along that surface. The shear strength (τ) is expressed as:

	 τ = c + σn tan ϕ	 [Eq. 2-1]

and plots as a straight line on a τ - σn diagram (Figure 2-6). The term c is the intrinsic cohesion of the soil sample 
that is independent of normal stress (σn) and tan ö is the coefficient of peak friction. The convention in geotechnical 
engineering is to describe the frictional part of the peak soil shear strength by the peak internal friction angle (ϕ) 
measured in degrees. This angle is the slope of the failure envelope plotted on Figure 2-6.

In order for a Mohr-Coulomb model to be accurate, the normal stress must be the effective normal stress (σ ′n    ) acting 
on the failure plane. The effective normal stress is the total normal stress less the pore water pressure (u   ) acting at 
same location, hence:
	 σ′n  = σn - u	 [Eq. 2-2]
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Table 2-2:  USCS Chart, Classification Using Laboratory Tests (ASTM D 2487)

Criteria for Assigning Group Symbols and
Group Names Using Laboratory Tests

Soil Classification

Group 
Symbol Group Name

Coarse-
grained
soils –
> 50% 

retained on
No. 200 sieve

Gravels – 
> 50% of coarse 
fraction retained 
on No. 4 sieve

Clean gravels –
< 5% fines

Cu > 4 and
1 < Cc < 3 GW Well-graded 

gravel

Cu < 4 and/or
1 > Cc > 3 GP Poorly graded 

gravel

Gravels with 
fines – > 12% 

fines

Fines classify as ML 
or MH GM Silty gravel

Fines classify as
CL or CH GC Clayey gravel

Sands –
> 50% of coarse 
fraction passes

No. 4 sieve

Clean sands –
< 5% fines

Cu > 6 and
1 < Cc < 3 SW Well-graded 

sand

Cu < 6 and/or
1 > Cc >3 SP Poorly graded 

sand

Sands with fines –
> 12% fines

Fines classify as ML 
or MH SM Silty sand

Fines classify as
CL or CH SC Clayey sand

Fine-
grained
soils –

> 50% passing
No. 200 sieve

Silts and clays –
liquid limit < 50

Inorganic

PI > 7 and plots on or 
above “A” line CL Lean clay

PI < 4 or plots below 
“A” line ML Silt

Organic – 
LLoven dried  / 

LLnot dried < 0.75

PI > 4 and plots on or 
above “A” line OL Organic clay

PI < 4 or plots below 
“A” line OL Organic silt

Silts and clays –
liquid limit > 50

Inorganic

PI plots on or above 
“A” line CH Fat clay

PI plots below “A” 
line MH Elastic silt

Organic –
LLoven dried  / 

LLnot dried < 0.75

Plots on or above 
“A” line OH Organic clay

Plots below “A” line OH Organic silt

Highly organic 
soils Primarily organic matter, dark in color, and organic odor PT Peat
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Table 2-3:  USCS Soil Classification Chart [ref. 17, 28] 

Criteria for Assigning Group Symbols and
Group Names Using Laboratory Tests

Soil Classification
Group 
Symbol Typical Names

Coarse-
grained
Soils –

More than 
half of 

material is 
larger than 

No. 200 
sieve size
(No. 200 
sieve size 

is about the 
smallest 

particle vis-
ible to the 
naked eye)

Gravels –
> 50% of 

coarse frac-
tion retained 

on No. 4 
sieve

(~ ¼-in. 
(6.35 mm) 

size)

Clean 
Gravels –
little or no 

fines

Wide range in grain size and sub-
stantial amounts of all intermedi-

ate particle sizes.
GW

Well-graded gravels, 
gravel-sand mixtures, little 

or no fines
Predominantly one size or a range 
of sizes with some intermediate 

sizes missing.
GP

Poorly graded gravels, 
gravel-sand mixtures little 

or no fines

Gravels 
with fines – 
appreciable 
amount of 

fines

Nonplastic fines (for identification 
procedures see ML below) GM Silty gravels, poorly graded 

gravel–sand-silt mixture

Plastic fines (for identification 
procedures see CL below) GC

Clayey gravels, poorly 
graded gravel–sand-clay 

mixture

Sands –
> 50% of 

coarse frac-
tion passes
No. 4 sieve

(~1/4-in. 
(6.35 mm) 

size)

Clean sands 
–

little or no 
fines

Wide range in grain sizes and 
substantial amounts of all interme-

diate particle sizes.
SW Well-graded sands, gravely 

sands, little or no fines

Predominantly one size or a range 
of sizes with some intermediate 

sizes missing.
SP

Poorly graded sands, 
gravelly sands, little or no 

fines
Sands with 

fines-
appreciable 
amount of 

fines

Nonplastic fines (for identification 
procedures see ML below) SM Silty sands, poorly graded 

sand-silt mixtures

Plastic fines (for identification 
procedures see CL below) SC Clayey sands, poorly 

graded sand-clay mixtures

Identification Procedures on Fraction Smaller 
than # 40 Sieve Size

Fine-
grained
Soils –

More than 
half of 

material is 
smaller than 

No. 200 
sieve size
(No. 200 
sieve size 

is about the 
smallest 

particle vis-
ible to the 
naked eye)

Dry Strength
(Crushing Car-

acteristics)

Dilatancy
(Reaction to 

Shaking)

Toughness
(Consistency 

near PL)

Silts and 
Clays –
Liquid 
limit < 

50

None to slight Quick to slow None ML

Inorganic silts and very 
fine sands, rock flour, silty 
or clayey fine sands with 

slight plasticity

Medium to high None to very slow Medium CL

Inorganic clays of low to 
medium plasticity, gravelly 

clays, sandy clays, silty 
clays, lean clays.

Slight to 
medium Slow Slight OL Organic silts and organic 

silt-clays of low plasticity

Silts and 
Clays –
Liquid 
limit > 

50

Slight to 
medium Slow to none Slight to 

medium MH
Inorganic silts, micaceous 

or diatomaceous fine sandy 
or silty soils, elastic silts

High to very 
high None High CH Inorganic clays of high 

plasticity fat clays

Medium to high None to very slow Slight to 
medium OH Organic clays of medium to 

high plasticity 
Highly 
organic 

soils
Readily identified by color, odor, spongy feel and frequently by 

fibrous texture. PT Peat and other highly 
organic soils
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For routine structures in which the groundwater table is not present within a depth of 66% of the height of the wall below 
the footing, or where significant groundwater flow into the reinforced zone is not expected, the distinction between 
effective and total stresses is not required (i.e., u = 0) and the terms may be used interchangeably.  If porewater pressures 
are present in the analysis, the designer should engage a qualified geotechnical engineer who is familiar with the site 
conditions to perform analysis and design calculations and to select appropriate drainage systems (see Section 2.3).

The values for c and ϕ should be determined from the results of direct shear tests (ASTM D 3080 [Ref. 72], 
AASHTO T-236 [Ref. 101]) for granular soils or standard triaxial compression tests (ASTM D 4767 [Ref. 73], 
AASHTO T-296 [Ref. 102], and AASHTO T-297 [Ref. 103]) for granular and cohesive soils carried out using 
normal pressures that are representative of site conditions. 

Note that in this manual the soil shear strength parameters used in design are peak strength values and are not 
reduced by application of a reduction factor nor related to the critical void ratio. 

Testing of site specific soils is recommended for definition of strength parameters for final design.  In the absence 
of project specific soils testing, the shear strength parameters may be estimated for preliminary design purposes.  
Typical ranges of peak shear strength values for a variety of compacted soils are given in Table 2-5.

Table 2-4:  Engineering Properties of Soils [Ref.17, 28]

Typical Names
of Soil Groups

USCS
Group 

Symbols

Permeability 
when 

Compacted

Shearing 
Strength

when 
Compacted

and Saturated

Compressibility
when 

Compacted
and Saturated

Workability as 
a Construction

Material

Well-graded gravels, gravel-
sand mixtures, little or no fines GW pervious excellent negligible excellent

Poorly graded gravels, gravel-
sand mixtures, little or no fines GP very pervious good negligible good

Silty gravels, poorly graded 
gravel-sand-silt mixtures GM semipervious 

to impervious good negligible good

Clayey gravels, poorly graded 
gravel-sand-clay mixtures GC impervious good to fair very low good

Well-graded sands, gravelly 
sands, little or no fines SW pervious excellent negligible excellent

Poorly graded sands, gravelly 
sands, little or no fines SP pervious good very low fair

Silty sands, poorly graded 
sand-silt mixtures SM semipervious 

to impervious good low fair

Clayey sands, poorly graded 
sand-clay mixtures SC impervious good to fair low good

Inorganic silts and very fine 
sands, rock flour, silty or 
clayey fine sands with slight 
plasticity

ML semipervious 
to impervious fair medium fair

Inorganic clays of low to 
medium plasticity, gravelly 
clays, sandy clays, silty clays, 
lean clays

CL impervious fair medium good to fair
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2.4.2.1:  Different Shear Strengths for Saturated Clays

There may be SRW project sites where the water is present within a depth of 0.66H below the leveling pad or the 
water table rises to or is present above the leveling pad on either a temporary or permanent basis.  Under these 
conditions, the wall designer should evaluate if it is necessary to consider design cases where the soil conditions 
are either drained or undrained.  This is especially important when saturated clay foundation soils, reinforced fills, 
or retained fills comprise the site soils (although the use of clay soils for reinforced fill is highly discouraged, 
especially if water is present).

Drained strength of the soil is the strength of the soil that results when the soil is loaded at a slow enough rate that 
pore pressures, induced by an applied load, are able to dissipate or drain.  Pore pressures dissipate very quickly in 
free draining materials and very slowly in clay soils or in some other soils that are not free draining (Percentage 
passing #200 sieve, P200 > 5%). 
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Figure 2-6:  Shear Strength of Soils
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Undrained strength of the soil is the strength of the soil that occurs when the soil is loaded at a rate faster compared 
to the rate required to attain drained conditions and a drained shear strength.  Such conditions are referred to as 
undrained conditions.  Undrained conditions are not encountered in free draining soils because pore pressures 
dissipate or drain immediately as a load is applied.  In soils that are not free draining, the pore pressures may not 
dissipate or drain at a rate fast enough to attain a drained condition.

There are three different shear strengths for saturated clay soils:
●● Consolidated Drained shear strength (CD shear strength)
●● Consolidated Undained shear strength (CU shear strength)
●● Unconsolidated Undrained shear strength (UU shear strength)  

The CD strength of a saturated clay soil is obtained from a CD triaxial shear strength test in which the soil sample 
is consolidated under a confining pressure surrounding the soil that is similar in magnitude to that which the soil is 
expected to be subjected to in-situ.  After the pore pressures in the soil generated by the applied confining pressure 
have dissipated, the soil sample is considered to be consolidated.  The sample is then loaded axially at a slow enough 
rate, which allows the pore pressures generated by the applied axial load sufficient time to dissipate or drain until the 
sample fails.  As such, the CD test sample is consolidated prior to loading and sheared under drained conditions.

The CU strength of a saturated clay soil is obtained from a CU triaxial shear test in which the soil sample is first 
consolidated as with the CD test.  The sample is loaded axially to failure without allowing the pore pressures 
generated by the applied axial load to dissipate or drain.  As such, the CU test sample is consolidated prior to loading 
and sheared under undrained conditions.

The UU strength of a saturated clay soil is obtained from a UU triaxial shear test or from an unconfined compression 
test.  In a UU test, a confining pressure is applied to the soil sample, as with a CD and CU test, but the pore pressures 
generated by the confining pressure are not allowed to dissipate or drain.  The sample is then loaded axially to failure 
without allowing the pore pressures generated by the applied axial load to dissipate or drain, as for the CU test.  As 
such, the UU test sample is unconsolidated prior to loading and sheared under undrained conditions. The unconfined 
compression test is a simple form of the UU test where the confining pressure is not applied to the sample and the 
sample is loaded axially as for the CU and UU tests.

The determination of the consolidated drained, consolidated undrained, and unconsolidated undrained shear strength 
of the soils for a project is typically the responsibility of the project geotechnical engineer.

2.4.3:  Soil Properties Required for Design of SRWs

The principal soil components associated with the analysis and design of SRW systems are summarized at the 
beginning of this chapter. Prior to stability calculations, representative soil properties must be assigned to each zone 
[i.e., reinforced (infill) soil, retained soil, foundation soils, and gravel fill and aggregate leveling pad].  Each soil zone 
material must be characterized by a peak friction angle (ϕ), cohesion term (c), and representative bulk unit weight 
defined as the moist unit weight per unit volume of sample (γ).  The cohesion term, however, for all representative 

Table 2-5:  Summary of Friction Angle Data for Use in Preliminary Design (Modified from Ref. 17)
Classification Friction Angle

Clay (nonplastic) 24 - 28°
Silt (nonplastic) 26 - 30°
Uniform Fine to Medium Sand 28 to 32°
Well-Graded Sand 30 - 34°
Sand and Medium Gravel 32 - 36°
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soils, with the exception of the foundation soils, is ignored for design. In the long term, fine grained soils will behave 
as a purely frictional material, thus, cohesion is not used in the design of the reinforced and retained soil zones.

Generally, peak effective stress parameters are appropriate for the design of conventional gravity and reinforced 
SRW structures.  The following table summarizes the minimum soil parameters required prior to the design of each 
wall section at a project site:

	 Soil Type	 γ(pcf (kN/m3))	  ϕ(deg) 	 c (psf (kPa))	
	 Reinforced (Infill)	 γc	 ϕi	 NA
	 Retained	 γr	 ϕr	 NA
	 Gravel fill	 γd	 ϕd	 NA
	 Foundation	 γf	 ϕf	   cf

Suggested gradation requirements for the reinforced (infill) soil in SRWs are:

	 Sieve Size	 Percent Passing
	 1 in. (25 mm)	 100*
	 No. 4	 100 - 20
	 No. 40	   0   - 60
	 No. 200	   0   - 35

* The maximum size should be limited to 1.0 in. (25 mm) for geosynthetic reinforced soil SRW unless tests have 
been or will be performed to evaluate potential strength reduction in the geosynthetic due to installation damage 
(Section 2.5.2.1). The plasticity of the fine fraction of the reinforced (infill) soil should be less than 20 (PI < 20).  
Note:  See discussion in Sections 5.9.1 and 10 for different requirements for different SRW applications.  

Suggested gradation requirements for the gravel fill (Section 2.3.1) in SRWs are:

	 Sieve Size	 Percent Passing
	 1 in. (25 mm)	 100 
	 3/4 in.  (19 mm)	 75 - 100 
	 No. 4	 0 - 60
	 No. 40	 0 - 50
	 No. 200	 0 - 5

Definition of total and effective shear stress strength properties becomes more important as the percent passing No. 
200 sieve increases.  Likewise, drainage and filtration become more critical.

Granular soils are recommended for the reinforced (infill) soil for SRWs because; these soils are easier to place and 
compact than fine grained soils; have higher permeability than fine grained soils, which assists in drainage; have 
greater shear strength than fine grained soils; and are generally less susceptible to creep.

Fine grained soils (greater than 50% fines) with low plasticity (i.e., SC, ML, CL with PI ≤ 20) may be used for 
SRW construction.  If fine grained soils are to be considered for the reinforced soil a geotechnical engineer should 
be involved with the design to ensure that the use of the fine grained soil does not result in unacceptable time-
dependent movement of the SRW system.  Special attention to internal and surface drainage is critical.			 

Finally, compaction of the fill materials is an important component of the SRW construction.  Compaction of 
the reinforced zone is critical to the stability of the overall structure. The following recommendations should be 
followed to ensure the proper selection, placement and compaction of the soil mass:
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Reinforced Zone
●● Backfill lift thickness must be limited to the height of the concrete block, or a maximum of 8 in. (203 mm).
●● Large compaction equipment must not be used within 3 ft (1 m) of the face of the wall.  Smaller, hand-

operated equipment can be used at the face of the retaining wall.
●● Project compaction requirements must be met.  The requirement is usually a percentage (95% to 98%) 

of the Standard Proctor dry density of the material and is set by the SRW design engineer.  Testing of the 
compacted fill must be carried out at regular intervals.

Retained Zone and Top-of-Wall Embankments
●● It is a popular misconception that the soil behind and above the reinforced zone can consist of soil that 

cannot be placed anywhere else on the site.  Since these areas contribute to the overall stability of the 
structure, the same care must be taken in the choice, placement and compaction of the soil adjacent to the 
reinforced zone.

●● Lift thickness must not exceed a maximum of 8 to 12 in. (203 to 305 mm)
●● Project compaction requirements must be met.

Foundation
●● Although the preparation and approval of the foundation is the responsibility of the geotechnical engineer, 

the retaining wall designer must be confident that the foundation will support the SRW.

Section 13, Construction of Segmental Retaining Walls, covers in detail many of the directives mentioned above.
 	
Section 2.5:  Geosynthetic Reinforcement

For reinforced soil SRWs, geosynthetic reinforcement is placed in horizontal layers to unify the mass of the 
composite SRW structure and thereby increase the resistance of the system to destabilizing forces generated by 
retained soils and surcharge loads. As mentioned previously, the mass of soil that is reinforced in this manner is 
called the reinforced (infill) soil zone.  The NCMA design methodology uses Coulomb earth pressure theory to 
model the forces acting on conventional and soil reinforced SRWs.  A detailed discussion of Coulomb earth pressure 
theory can be found in Section 5 of this manual.

To create the composite structure the reinforcement layers must be of sufficient number, possess adequate tensile 
strength, and develop sufficient anchorage capacity to hold the composite mass (reinforced soil zone) together.  A 
“tied-back wedge model” is used in this manual to analyze the reinforced soil mass for internal stability. In this 
model, the geosynthetic reinforcement layers are assumed to provide a tensile force to resist the outward movement 
of the reinforced soil wedge IJK illustrated in Figure 2-7.  The orientation of the plane defining the limits of the 
failure wedge behind the wall facing is defined by angle αi and calculated using Equation 5-5.  The area within the 
reinforced soil zone beyond the failure wedge defined by IJK in Figure 2-7 is designated the anchorage zone for 
geosynthetic reinforcement.

Calculation of αi using Equation 5-5 is consistent with the Coulomb wedge theory adopted in this manual to calculate 
active earth pressures.  The most common failure surface used in tied-back wedge models is the theoretical Rankine 
surface (Equation 5-6) [Refs. 19, 36], which yields greater αi angles than Equation 5-5. The results of instrumented 
geosynthetic reinforced soil retaining walls show that the location of the potential failure surface propagating up 
into the reinforced soil zone from the heel of the bottom SRW unit may be planar, log spiral or bilinear in shape 
and falls within the failure plane predicted using Equation 5-5 [Refs. 33, 37, 39 and 43].   These design guidelines,  
however, have conservatively used the Coulomb failure plane for internal stability calculations.  The influence of 
αi on reinforcement lengths is typically limited to the topmost layers in the reinforced soil mass.  Lower layers will 
have longer anchorage lengths and greater overburden pressures, thus they will not need to be extended past the 
minimum uniform reinforcement length required to satisfy external stability requirements.
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2.5.1:  Reinforcement Concepts

A reinforced soil mass is somewhat analogous to reinforced concrete in that the mechanical properties of the mass 
are improved by reinforcement placed parallel to the principal strain direction to compensate for soil’s lack of 
tensile resistance. The improved tensile properties are a result of the interaction between the reinforcement and the 
soil. The composite material has the following characteristics:

●● Stress transfer between the soil and reinforcement takes place continuously along the reinforcement.
●● Reinforcements are distributed throughout the soil mass with a degree of regularity and must not be 

localized.

Stresses are transferred between soil and reinforcement by friction and/or passive resistance depending on 
reinforcement geometry.  Friction develops at locations where there is a relative shear displacement and corresponding 
shear stress between the soil and reinforcement surface.  Examples of such reinforcing elements are longitudinal 
bars in geogrids, and geotextiles.  
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Passive resistance occurs through the development of bearing type stresses on “transverse” reinforcement surfaces 
normal to the direction of the soil reinforcement relative movement.  Passive resistance is generally considered to 
be the primary interaction for geogrids and bar mats.

The contribution of each transfer mechanism for a particular reinforcement will depend on the roughness of the 
surface (skin friction), normal effective stress, grid opening dimensions, thickness of the transverse members, 
and elongation characteristics of the reinforcement. Equally important for interaction development are the soil 
characteristics, including grain size, grain size distribution, particle shape, density, water content, cohesion and 
stiffness [Ref. 58].

The designer must also ensure that for the design life of the structure, a candidate geosynthetic reinforcement has 
adequate tensile capacity within the soil and at the facing connection; plus sufficient anchorage length beyond 
the potential internal failure wedge to develop sufficient anchorage capacity to resist pullout of the reinforcement 
from the soil. A method to evaluate a candidate geosynthetic reinforcement material with respect to these criteria is 
described in the following sections.

2.5.2:  Long‑Term Design Strength

The Long‑Term Design Strength (LTDS) of a geosynthetic reinforcement is the strength at limit equilibrium 
conditions in the soil. The LTDS is defined as the strength in the geosynthetic reinforcement at the end of the service 
life of a reinforced soil SRW, at which time all design criteria must be met for the structure to perform as intended.  
Therefore, in this manual reinforced soil SRWs will be designed for conditions (soils, environment and applied 
loads) anticipated at the end of the design service life.

Selection of the ultimate tensile strength (Tult ) for geosynthetic reinforcement is complex.  The tensile properties 
of geosynthetics are affected by environmental factors such as creep, installation damage, aging, temperature and 
confining stress.
 
Polymeric reinforcements are generally durable materials that will perform for the life of the structure when properly 
designed.  The considerations that are important in evaluating the long-term performance of the reinforcement 
are degradation due to physiochemical activity in the soil such as hydrolysis, oxidation and environmental stress 
cracking (depending on polymer type); installation damage, and the effects of high temperatures at the facing and 
connections of SRWs.

Because of varying polymer types, quality, additives, product geometry, and manufacturing processes each 
geosynthetic is different in its resistance to aging.  Each product must, therefore, be investigated individually.

2.5.2.1:  Determination of the Long-Term Design Strength of the Geosynthetic

The following procedure to determine long-term design strength (LTDS) for SRW design has been adapted from the 
US Department of Transportation ‑ FHWA Publication No. FHWA NHI-00-043 DP. 82-1 Mechanically Stabilized 
Earth Walls and Reinforced Soil Slopes - Design and Construction Guidelines [Ref. 58].  A full description of the 
procedure is provided in Appendix C.

The long-term design strength of the geosynthetic is determined as follows:

	
ult
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[Eq. 2-3]

where:
Tult 	 =	 Ultimate (or yield tensile strength) from single or multi-rib tensile strength test (ASTM D 6637) for 
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geogrids or wide width tensile strength tests (ASTM D 4595) for geotextiles based on minimum 
average roll value (MARV) for the product.

RFD 	 =	 Durability reduction factor is dependent on the susceptibility of the geosynthetic to attack by 
microorganisms, chemicals, thermal oxidation, hydrolysis and stress cracking.  The typical range is 
from 1.1 to 2.0.  The minimum reduction factor shall be 1.1.

RFID 	=	 Installation damage reduction factor can range from 1.05 to 3.0, depending on backfill gradation and 
product mass per unit weight.  The minimum reduction factor shall be 1.05 to account for testing 
uncertainties.

RFCR	 =	 Creep reduction factor is the ratio of the ultimate strength (Tult) to the creep limit strength obtained 
from laboratory creep tests for each product, and can vary typically from 1.50 to 5.0, depending on 
the polymer.

2.5.3:  Soil-Reinforcement Interaction Performance

Reinforced SRW design requires an estimate of two soil geosynthetic reinforcement interaction coefficients.  The 
coefficient of interaction for pullout, Ci , is required for calculations used to estimate the reinforcement pullout 
capacity within the anchorage zone of the reinforced soil mass.  The coefficient of direct sliding Cds, is required to 
estimate the resistance to internal sliding that is generated along the surface of a layer of geosynthetic reinforcement 
when a portion of the reinforced soil mass slides along its interface.

2.5.3.1:  Coefficient of Interaction for Pullout

The coefficient of interaction for pullout, Ci , is used to relate the pullout resistance of the geosynthetic reinforcement 
to the available soil shear strength.  The coefficient of interaction can be expressed mathematically as:
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where:

Rpo 	 =	 maximum pullout resistance (lb/ft)
Le 	 =	 horizontal length of geosynthetic in the anchorage zone (ft)
σn 	 =	 normal stress acting over the geosynthetic anchorage length (psf)
ϕi 	 =	 peak angle of internal friction for the reinforced (infill) soil (deg)

The factor 2 in the denominator represents the number of interface surfaces for soil above and below the 
reinforcement.  The coefficient of interaction for pullout for geotextiles or geogrids is determined directly from 
large scale pullout testing using sample candidate products that are at least 24 in. (610 mm) in length and site 
specific soils (or similar soils based on USCS) compacted to densities anticipated in the field. Pullout testing 
procedures should follow ASTM D 6706 Standard Test Method for Measuring Geosynthetic Pullout Resistance 
in Soil. Calculation of pullout capacity requires the peak internal friction angle, ϕi, of the anchorage soil be 
known.  The reinforcement sample is placed over the reconstituted soil and then buried.  A confining pressure 
σn is applied to the top of the soil sample to simulate the vertical pressure that is anticipated for the anchorage 
elevation examined. 

Due to the variety of shapes and product structures in commercially available geosynthetics, it is important to note 
that Ci will vary between geosynthetic products and may change with magnitude of normal pressure applied to 
samples of geosynthetic.  Therefore, it is important that tests be conducted over the range of confining (normal) 
pressures anticipated in the field and the appropriate Ci for each reinforcement elevation be utilized.  

The typical service life (100 years) of SRWs requires the Ci used in design represent a long-term parameter.  To ensure 
the Ci value determined from pullout testing is unaffected by time dependent properties, the pullout resistance in 
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design should be limited to the creep limited strength of the geosynthetic (Tult /RFcr ).  In addition, the shear strength 
parameters for the soil should be adjusted for creep behavior if applicable.  However, creep potential of reinforced 
soil is not a concern if well compacted granular soils are used in the reinforced (infill) soil zone.  The potential for 
creep exists for cohesive soils such as MH, CH, OL, and OH; soil types not recommended for use with SRWs.

2.5.3.2:  Coefficient of Direct Sliding

Geosynthetic reinforcement layers may create preferred planes of sliding within the reinforced (infill) zone of a SRW 
structure.  The movement of a portion of the reinforced (infill) soil mass across a stationary layer of geosynthetic 
reinforcement is modeled as a direct shear failure mode in internal stability calculations.  The coefficient of direct 
sliding, Cds, shall be determined in accordance with Standard Test Method for Determining the Coefficient of Soil 
and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method, ASTM D 5321 [Ref. 74].  
Parameter Cds is to be calculated as follows:
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[Eq. 2-5]

where:	
Rds	 =	 maximum shear resistance from direct shear test (lb/ft (kN/m))
L	 =	 stationary length of geosynthetic (ft (m)) 
σn	 =	 normal stress on geosynthetic sample (psf (kPa)) 
ϕ	 =	 peak angle of internal friction of the soil (deg)

The value of Cds can be expected to vary with normal stress and, therefore, the tests should be carried out over a 
range of confining pressures expected for reinforcement layers in the proposed structure.  In the absence of site-
specific soil testing, the magnitude of Cds may be estimated from manufacturer’s test data using similar soil or soils 
with lower shear strength than project soils.  In no case shall Cds be assigned a value greater than one.
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SECTION 3
ROLES AND RESPONSIBILITIES ON PROJECTS INVOLVING SRWS

On all construction projects, including those involving SRWs, it is the owner’s responsibility to achieve coordination 
between construction and design professionals to ensure all necessary and required design, engineering analysis, 
and inspection is provided. In many cases a design professional such as a site civil engineer or an architect will act 
as the owner’s representative, and if acting in this role, should ensure all needed engineering is provided. Either 
the owner directly, or the owner’s representative, should ensure that the engineering design professionals’ scope 
of work, roles, and responsibilities are clearly defined so that there is no ambiguity regarding responsibility for 
investigation, analysis, design, and testing. 

The roles outlined in the following subsections are typical industry standard roles for various engineering disciplines. 
It is suggested that SRW design and construction be no exception to these traditional roles.  The assignment of these 
proposed roles are simply meant as suggested guidelines. These roles may vary from project to project, however,  
depending on the contractual obligations of each consultant. For the simpler, residential landscape projects, just 
one design professional may take on the responsibility of several of these roles, if acceptable to local building code 
requirements. For tall or complex walls and commercial projects, each of these roles is likely to be provided by 
separate firms with expertise in a particular discipline.  The remaining discussion in this section is generally oriented 
towards projects where several design professionals are contracted for each distinct role. 

The design community has many professionals that have the education and experience to fulfill the roles outlined 
in this chapter.  It is the responsibility of the owner or owner’s representative, who is developing or changing the 
current configuration of their land, to contract with professionals to validate that these roles are properly addressed.  
To ensure that the design professionals are acting in the best interest of the owner or owner’s representative, there 
should be a direct contractual relationship between the owner or owner’s representative and the design professionals.  
In some cases, design firms are multidisciplinary and are able to handle various roles of the overall design and 
inspection requirements, in other cases multiple design firms that specialize in one or more areas are brought 
together to form the collective design team.  For these reasons, having the design and inspection portions of the 
project being the responsibility of the same company contracted to build the walls should be discouraged.

Reinforced SRWs, because of their nature as composite soil structures, may have unique design and inspection 
considerations for the site civil engineer, the geotechnical engineer, and the independent testing agency.  These 
considerations are discussed in further detail in the following subsections.   For the design professional that is not 
directly tasked with the structural design of the SRW, technical guidance is provided for the site civil and geotechnical 
engineer in Sections 11 and 12 respectively. Wall design and engineering guidance for the SRW engineer is left for 
thorough discussion in Sections 4 through 10.

Section 3.1:  Overview of Roles

The most straightforward means for the owner to ensure all engineering roles are well-defined in regards to a SRW 
is for the SRW design engineer’s assigned roles to be the same as those traditionally given to a structural engineer 
designing a cast-in-place retaining wall. The other design professionals, such as site civil and geotechnical engineer, 
should then provide the same engineering roles and consulting services as they would for a project involving a cast-
in-place retaining wall.

The owner/developer, or a designated representative, of the project is ultimately responsible for ensuring that all 
applicable requirements of governing authorities for the permitting, design, construction, and safety on the project 
are addressed. The owner, or owner’s representative, should ensure the types of retaining walls that are specified 
are appropriate for the site conditions and ensure the wall alignment fits within the site’s space limitations. It is 
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the responsibility of the owner, or the owner’s representative to contract an engineer to provide site civil engineering 
including site layout, drainage, and grading. The owner must also ensure a geotechnical engineer and testing agency 
are contracted to provide all necessary and required soils exploration, analysis, and earthwork inspection for the entire 
project, including in the vicinity of the SRWs, just as they do in the vicinity of building structures. The owner or 
owner’s representative must also ensure a qualified wall design engineer provides a structural design of the SRW. 

The following is an itemized list of the suggested roles for each professional discipline for larger walls and 
commercial projects involving SRWs. A more thorough explanation of the site civil engineer, geotechnical engineer, 
SRW engineer roles, and construction observation and testing roles is provided following these lists. The actual 
responsibilities for each discipline should be contractually based.

Owner/Developer or Owner’s Representative Roles
●● Ensure that design professionals are contracted to provide all needed engineering evaluation, layout, design, 

testing, and inspection required.

Landscape Architect/Architect Suggested Roles
●● May act as specifier of retaining walls, rather than site civil engineer, primarily for walls near building 

structures (architectural walls) or for landscaping features. 
●● Specify retaining walls appropriate to project conditions, if not civil engineer’s responsibility.
●● For walls near building structures or for landscaping, retaining wall layout and alignment on site plan, if not 

site civil engineer’s responsibility.
●● Coordination of SRW layout with site civil engineer’s site and grading plans.

Site Civil Engineer Suggested Roles
●● Specify retaining walls appropriate to project conditions.
●● Act as SRW Engineer (see below) when wall design done in-house.
●● Prepare site plan and grading plan, including slopes and SRW heights and alignments. 
●● Address any space limitations and easement issues in regards to SRW layout.
●● Design of surface grading for drainage and design for erosion control around SRWs.
●● Design of storm-water collection structures and detention/retention ponds.
●● Utility design and layout around SRWs.
●● Pavement section design and grading above SRWs.
●● Layout of traffic control structures such as pedestrian fall protection, curbs, wheel stops, guide rails, and 

traffic barriers behind walls.
●● Hydrologic evaluations including water flows, scour depths, flood areas, and high water level predictions 

around SRWs.
●● Ensure SRW engineer is contracted for involvement in pre-construction meetings and construction inspection 

services coordination.
●● Construction observation of the overall wall structure installation and review of SRW material submittals, 

if SRW engineer is not contracted specifically for these services.

Geotechnical Engineer Suggested Roles
●● Subsurface investigation including any needed soil borings and laboratory soils testing.
●● Defining pertinent subsurface conditions including soils, rock, and groundwater conditions in area of SRWs.
●● Determining properties and strengths of retained soil/rock behind and foundation material underneath the 

SRWs as well as propose soil for use as reinforced fill.
●● Evaluation of foundation capacity below SRW including bearing capacity and settlement estimates and 

recommendations for any needed foundation improvements.
●● Global stability analysis throughout site including above and below SRWs.
●● Supervision and coordination of slope stability evaluation and corrections around the SRWs with the 

SRWs engineer.
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●● Evaluation of seismic potential and recommended design accelerations, if applicable.
●● Construction inspection and testing of on site and fill soils (generally on a time and materials basis, separate 

from the soils exploration report contract).

SRW Engineer Suggested Roles
●● Design of SRW for structural stability including external stability (sliding and overturning), internal stability, 

and facial stability.
●● Determination of the maximum unreinforced height of SRW.
●● Design of geogrid layout for taller walls requiring soil reinforcement.
●● Determination of minimum embedment of wall (except in the case of scour depth or erosion control issues, 

which should be determined by site civil engineer).
●● Specification and/or approval of wall unit, geogrid reinforcements, drainage material within wall structure, 

and reinforced soil properties.
●● Determination of what structures can or cannot be placed within reinforced soil zone and wall face, and 

detailing for SRWs to accommodate acceptable structures.
●● Under the direction of geotechnical engineer, assist in the coordination of slope stability evaluation around 

and through the SRWs and the design of the geogrid in reinforced SRWs to address slope stability in vicinity 
of SRWs, as needed.

●● If contracted to and notified, construction observation of the overall wall structure installation and review of 
SRW material submittals (generally on a time and materials basis, separate from the wall design contract) - 
(see Construction Observation and Testing Agencies Suggested Roles below).

●● When required by state law that the SRW engineer must be a licensed professional structural engineer 
(S.E.), then structural engineer also takes on SRW engineer role. In this case, the general project structural 
engineer often may be a different firm than the SRW structural engineer, depending on the project structural 
engineer’s familiarity with SRWs and their interest in designing SRWs.

Construction Observation and Testing Agencies Suggested Roles
●● Earthwork inspection preferably performed by the geotechnical engineering consultant.
●● Inspection of SRW foundation area, including area below planned geogrid-reinforced soil fill, to verify 

bearing, soil, and groundwater conditions meet design assumptions.
●● Inspection of native soils in retained zone for consistency with reported soil types and properties.
●● Monitoring of fill placement and laboratory and field testing to ensure proper soil types used for fill and 

proper compaction achieved.
●● Overall wall material installation inspection – preferably contracted directly with SRW engineer or site civil 

engineer.
●● Construction observation of wall unit and geogrid installation.
●● Review of material submittals for conformance with specifications.
●● Additional review of soil properties and earthwork testing, provided by the geotechnical engineer, for 

conformance with wall materials’ specifications.

Structural Engineer Suggested Roles
●● Structural design of appurtenant structures to SRW such as guide rails, traffic barriers, and structural slabs 

at top or bottom of wall.

Section 3.2:  Site Civil Engineer Suggested Roles Overview

It is suggested that the site civil engineer be contracted for all traditional site civil tasks, including the design of surface 
drainage, storm drainage collection structures, utility layout, erosion control, and scour protection. The site civil 
engineer is also typically responsible for site layout and grading plans, including slopes and retaining wall locations. 
The site civil engineer should ensure all planned grades, including those at the top and bottom of SRWs, do not exceed 
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the stable slope angles, in consultation with the geotechnical engineer, and do not cause surface drainage or erosion 
problems. It is suggested that the site civil engineer properly plan the wall alignment so that the SRW structure does not 
encroach on any easements and that site civil engineer be responsible for any other issues related to the wall location, 
such as proximity to property lines, utilities, watersheds, wetlands, or any other easements. In some cases, the site civil 
engineer may also act as the SRW design engineer and take on suggested roles for the SRW Engineer discussed in 
Section 3.4. The site civil engineer should evaluate and design for any hydrologic issues and structures such as: 

●● culverts,
●● open channels,
●● detention/retention ponds, and
●● scour and erosion control structures.

and define
●● high water levels,
●● flow volumes,
●● flood areas, and
●● scour depths.

The site civil engineer should provide any pertinent hydrologic data that may affect the SRW to the SRW engineer. 
Design and engineering guidelines for site civil engineers for sites involving SRWs are provided in Section 11.

Often, when not designing the SRW in-house, the site civil engineer specifies the engineering design of SRWs to be part 
of the SRW construction contract (a design/build bid). While it has been a common practice for civil engineers to specify 
the SRW design be provided as part of the wall construction bid, there are number of reasons why this practice may be 
inappropriate and is thus discouraged by this manual. Such a design/build bid can place the SRW engineer in a different 
position than other project engineers. Unlike other engineers working directly for the owner, the SRW engineer in this 
design/build case is often working directly for a contractor, who is often a subcontractor to other contractors. This can 
cause design coordination issues because the SRW engineer may not be included in project discussions with other 
engineers, such as pre-construction meetings. It is preferable to have the SRW design engineer perform the design prior 
to bidding the wall construction rather than as a part of a construction bid. This is even more sensitive for larger walls 
or complicated sites where a significant coordination is often needed between the civil, geotechnical, and SRW design 
engineers and that this design coordination be accomplished before construction bids. Therefore, it is suggested that the 
site civil engineer first determine if it is appropriate for a given project to have the SRW engineering design specified as 
part of the wall construction contract. If it is the responsibility of the site civil to determine roles and the civil engineer 
still chooses to specify the SRW design as part of the construction bid, then the site civil engineer should ensure 
the SRW design engineer is involved in any needed design and construction observation services before and during 
construction, similar to the way geotechnical engineers are often contracted for their services during construction.

Section 3.3:  Geotechnical Engineer Suggested Roles Overview

It is recommended that the geotechnical engineer be contracted to provide the same engineering roles in the vicinity 
of the SRW as they do for all other structures on site. The geotechnical engineer’s typical roles are the investigation, 
analysis, and testing of the site soil materials and groundwater conditions. Just as geotechnical engineers traditionally 
provide bearing capacity, settlement estimates, and slope stability analysis for building structures, it is recommended 
they do the same for SRWs. The geotechnical engineer’s role should include providing soil properties such as 
soil strengths and bearing capacities to the SRW engineer, just as the geotechnical engineer would provide to the 
structural designer of a cast-in-place wall.

Slope stability evaluation around a SRW can be a source of confusion in the roles of the various design professionals. 
Some confusion arises around SRWs because a SRW engineer can often address slope stability issues near a geogrid-
reinforced SRW by modifying their wall design’s geogrid layout. Thus the SRW engineer is sometimes requested to 
evaluate and design for slope stability concerns around a SRW by the civil engineers specifications. 
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It is recommended that, regardless of the involvement of the SRW engineer in addressing global stability around an 
SRW, the geotechnical engineer should be contracted to have the ultimate slope stability responsibility for all areas 
of the site, including determining when and where global stability analyses are needed, ensuring the appropriate soils 
and groundwater properties are used for these analyses, and ensuring that all needed failure planes are analyzed. It 
is recommended that the geotechnical engineer be contracted to directly perform the needed slope stability analyses 
themselves. While the geotechnical engineer may need to coordinate with the SRW engineer for evaluation of potential 
failure planes that pass through SRW geogrid-reinforced soil, it is suggested the geotechnical engineer still act in the 
primary role of responsibility for these analyses. The geotechnical engineer can use their soils expertise, and their 
knowledge of overall site conditions, to insure all needed global stability evaluations are provided.

When the geotechnical consultant is retained to provide construction observation and soils testing for a project, this 
contract should include inspection and testing of SRW earthwork along with all other earthwork on site. See Section 
13 for further discussion of inspection roles.

While geotechnical engineers should be contracted for the same traditional roles around SRWs as around other 
structures, the soils engineering around SRWs may require some slightly different methods of analysis compared 
to evaluating soils below rigid structures on spread footings. As such, design guidelines for geotechnical engineers 
working on projects that involve SRWs are provided in Section 12.

Section 3.4:  SRW Design Engineer Suggested Roles Overview

It is suggested that the SRW design engineer serve the same roles for SRWs as a structural engineer would for the 
design of a cast-in-place retaining wall. In some cases the site civil engineering firm may act as the SRW design 
engineer while in other cases the SRW design engineer will be associated with a separate firm. The SRW design 
engineer should design a stable SRW, given the specified wall geometry and site conditions provided by the site civil 
engineer and the geotechnical engineer. The SRW engineer’s duties typically would include determining the SRWs 
maximum stable unreinforced height and, when geogrid reinforcement is needed, providing a geogrid layout design. 

The SRW design engineer will be responsible for preparation of the SRW construction drawings, internal stability, 
facial stability of the SRW units, internal drainage of the SRW (both at the face of the wall and at the rear of the 
reinforced soil mass, if required), external stability (sliding and overturning), and internal compound stability. 
Sections 5 through 10 of this manual address the engineering methods available to the SRW design engineer in 
fullfilling their roles and responsiblities.

The wall designers output would generally consist of specifications of wall components, a wall elevation detail, 
typical cross sections, details for any needed drainage materials within or just behind the wall system, and details 
for how to incorporate any other structures (utilities, pipe penetrations, posts etc.), if feasible, within the reinforced 
zone and wall face. 

It is suggested that the SRW design engineer not assume any duties typically relegated to the geotechnical engineer 
elsewhere on site. While a SRW engineer may be asked to participate in addressing the slope stability immediately 
around a SRW or foundation improvements in the soil below a SRW, it is recommended that the geotechnical 
engineer always be clearly contracted to have ultimate responsibility for all slope stability and bearing capacity/
settlement concerns on site, including those below and around SRWs.

It is appropriate that the SRW engineer be contracted to provide services during construction, especially on larger 
projects, but it is recommended that these services not be required as part of the a design/build bid of the wall 
construction. Time lag between design and construction can make it impractical to expect the designer be available 
for services during construction and given the often unpredictability of the extent and timing of the wall construction, 
it is inappropriate to have services during construction be in a lump/sum design/build contract. Rather, it is suggested 
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the SRW engineer be hired under a separate contract and budget to provide services during construction, such as 
pre-construction correspondence and meetings, review of materials submittals, and review of earthwork testing 
performed by geotechnical engineer, and review of wall contractors building practices.

Section 3.5:  Construction Observation and Testing Suggested Roles Overview

The soil in the reinforced zone should be checked to ensure it meets specifications; just as concrete and steel are 
inspected in cast-in-place concrete retaining wall. The wall contractor is responsible for quality control of the wall 
installation: performing necessary observation and testing to verify work performed meets minimum standards. It 
is the responsibility of the owner or owner’s representative to perform quality assurance: auditing and verifying the 
quality control is being performed properly. Just as done for building structures and cast-in-place retaining walls, 
foundation and retained soils should be evaluated for consistency with soil properties used in the design. Generally, 
the evaluation of the onsite soil conditions and earthwork testing is provided by the geotechnical engineer.  It is 
suggested that the geotechnical engineer do any field and laboratory testing they deem needed to ensure proper soil 
conditions and that they confer with the SRW engineer regarding the reinforced soil specifications and provide the 
SRW engineer with their test results on the fill soil.  
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SECTION 4
WALL LAYOUT AND PLANNING

An important part of the design process is to identify the retaining walls on a given project.  Most often, retaining 
walls are identified on the Grading Plans, which are typically a part of the project’s civil drawings.  With the aid 
of an example, the following sections will help the wall design engineer to read and identify the characteristics of 
the retaining wall from the grading information provided by the civil engineer.  Also, from this information, the 
designer will be able to recognize problem areas that can be brought to the attention of the civil engineer, who then 
can make necessary revisions.  At this point in the process, before the wall design is completed, it is important that 
there is a clear line of communication between the wall design engineer and the civil engineer so that any problems 
with the wall can be resolved early in the design. 

Section 4.1:  Wall Layout Example

As a means to describe the laying out process of a retaining wall, an example will be used as shown in Figure 4-1. 
This wall layout example is intended for the wall design engineer, however, it also highlights issues that are typically 
the responsibility of other design professionals such as the project civil engineer or the geotechnical depending on 
the contracted roles for each professional. For additional discussion about roles and responsibilities of various 
professional in relation to projects with SRWs, see Section 3 of this manual. Also, Section 11 provides guidelines 
for civil engineers to address some of the issues highlighted in this example, when they are preparing site layout and 
grading features around SRWs.	

Figure 4-1:  Part of a Grading Plan
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Section 4.2:  Site, Grading, and Utility Plans

The following pertinent information typically can be obtained from the site civil plans (or in some cases the landscape 
architecture or architecture plans), sometimes all this information is on the grading plans, sometimes it is separated 
on several plan sheets such as site layout, utility, and landscape plans.

●● Location of retaining walls
●● Property lines, buffers, limits of disturbance, easements, tree lines, etc…
●● Utilities (may be on utility plans), including storm and sanitary sewer lines, water mains, electrical lines, etc…
●● Existing and proposed contour lines
●● Loading features such as parking areas, embankments, buildings, etc…
●● Scale of drawing

An example of part of a grading plan is shown in Figure 4-1.

4.2.1:  Location of Retaining Walls

Two (2) retaining walls have been identified on the grading plan; Wall A and Wall B.  Wall A does not hold back 	
soil and therefore cannot be an SRW, but rather a cast-in-place concrete wall.  Wall B does retain soil and can be 
designed as a reinforced SRW.  Both walls abut each other to form a detention pond. 

Once the SRW has been identified, the wall designer must determine the “high” and “low” side of the retaining wall.  
This will determine the beginning and end of the retaining wall.  It is customary to designate, if facing the retaining 
wall, the beginning of the wall at the left hand side and the end at the right hand side.

It is customary for the retaining wall to be shown as a line (of no real thickness) on the grading plan.  Because SRWs 
are installed with batters (setbacks), this can cause some unforeseen space problems, especially in higher walls, with 
or without toe or backslopes.  It is important to determine whether the line on the grading plan refers to the planned 
top of the wall or the bottom of the wall.  The sketch on Figure 4-2 illustrates the potential confusion.

If the line on the grading plan representing the retaining wall refers to the bottom of the wall (left-hand side of 
Figure 4-2), significant loss of space at the top of the wall is incurred.  Similarly, if the line on the grading plan 
representing the retaining wall refers to the top of the wall (right-hand side of Figure 4-2), significant loss of space 
at the bottom of the wall is incurred; and, if there is a toe slope present, additional height to the wall will occur.

As mentioned previously, most SRW concrete blocks are provided with a setback that results in an overall 
inclination.  The inclination varies from near vertical (2-degree inclination) to 20 degrees.  In this manual, the 
maximum inclination for a structure to be considered a retaining wall is 20 degrees.  Structures inclined to angles 
greater than 20 degrees are considered to fall into the embankment category.  The design of such reinforced steep 
slopes follows a different approach and is not covered in this wall design manual.

4.2.2:  Property Lines and Other Space Limitations

Generally the project civil engineer (or landscape architect or architect) is contracted to address space considerations 
and other limitations in their site layout, including, but not limited to: property lines, buffers, limits of disturbance, 
easements, tree lines, etc…Such limitations and possible space constraints should be clearly indicated on the grading 
plan.  Further guidelines for project civil engineers doing wall layouts as a part of their civil drawings is provided 
in Section 11.

It is common for retaining walls to be located at or very close to property lines.  In the case where the wall is 
retaining the soil on the given project site, the entire SRW (facing and reinforced zone) can easily be located very 



Layout� 35

close to the property line. In the case where the wall is supporting an adjacent property, however, enough space must 
be allocated to allow for the retaining wall, including reinforced zone and any excavated slopes.  This is illustrated 
on the sketch on Figure 4-3.

The location of the retaining wall can also be dependant on space or boundary limitations on the site.  For example, 
counties and municipalities may have specific buffers or easements for natural water courses such as creeks.  Retaining 
walls are not typiclly permitted within these boundaries and the project civil engineer should be aware of these 
limitations in their typical role in providing site layout in conformance with applicable standards. Because the exact 
extent of reinforcement length needed behind the planned walls may not be known when the civil engineer is preparing 
the site layout and grading, they may not have accurately considered the space needed for the reinforced zone. 

The retaining wall design engineer is typically not contracted to, nor considered responsible to, address proper 
layout and space constraints for the wall because the wall design engineer is typically not specifying the wall 
alignment. Rather, the wall design engineer is typically producing structural drawings for a wall alignment provided 
to them by others. If there are clear space constraints or limitations shown on the civil plans (such as property lines) 
that indicate the planned wall layout cannot accommodate the space needed for the reinforced wall, then the wall 
design engineer can provide an additional check by noting these issues to the owner and/or project civil engineer. 
The project civil engineer is typically responsible for knowing about any easement, property line, utility locations 
and any other space restriction issues and in such a role, should review final wall designs to ensure the footprint of 
the wall does not extend into restricted areas.

Figure 4-2:  Location of Retaining Wall with Respect to Top and Bottom Elevations
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4.2.3:  Utilities

Location of buried utilities such as sewer and sanitary lines, water mains, and electrical conduits, as well as any 
drop structures associated with these utilities, must be included in the information provided by the project civil 
engineer.  The grading plan on Figure 4-1 is a good example that clearly indicates the location of a proposed sewer 
line running parallel to Wall B.  Also indicated on the plan are the locations of catch basin structures B-2 and C-1, 
as well as a perpendicular wall penetration at the B-2 location.

As a general rule, it is not recommended to locate any utilities within the reinforced soil zone. Section 11.9 provides 
further guidelines to project civil engineers locating retaining walls near planned utilities. In some cases, however, 
having utilities within a wall’s reinforced zone is unavoidable.  In these cases, the project civil engineer, wall design 
engineer, and geotechnical engineer should coordinate closely regarding the wall’s structural concerns, maintenance 
implications, predicted settlement of the utilities present in the reinforced zone, and take precautions to ensure that 
the pipes properly function, remain water-tight, and maintenance of utilities is not likely to damage the wall.

Note that in the example shown on Figure 4-1, the storm sewer pipes are located in the reinforced zone.  Also 
note that the catch basins B-2 and C-1 are located very close to the top of the retaining wall.  In fact, if the line 
representing the retaining wall on the grading plan refers to the grade at the bottom of the wall, then the catch basins 
are actually on the top of the wall.  This poses a problem and should be brought to the attention of the project civil 

Figure 4-3:  Location of Retaining Wall with Respect to Boundaries
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engineer and ideally, should be avoided by the civil engineer re-designing the planned layout of the catch basins and 
storm sewers. (See also Section 11.5 for a more through discussion on stormwater collection.)

Also indicated on the grading plan is the pipe penetration (at B-2 location) at the wall location into the detention 
pond area.  Many times, when a retaining wall forms part or the entire perimeter of a detention pond, penetrations 
through the retaining wall can be expected.  Pipe penetrations are not uncommon and, depending on the diameter, 
can be dealt with during construction without much difficulty (See also Section 11.6 for addressing penetrations 
through the face of SRWs.)

The topic of utilities and their location with respect to retaining walls is an important one.  Section 11 provides 
guidelines for the civil engineer in preparing utility plans.  If the civil engineer is conscious of the effects of utility 
location to the installation and long-term performance of retaining walls at the outset of the project, then there will 
be less difficulty in designing the retaining wall.

The same holds true for all structures, buried or not.  In locating buildings, for example, the civil engineer should 
keep in mind that ideally, the building should be located outside the loading influence of the retaining wall.  This 
will reduce any potential for lateral movement of the wall.

4.2.4: Contour Lines

Contour lines, both existing and proposed, will determine the grade at the top of the wall and the grade at the bottom 
of the wall.  The wall design engineer should keep in mind the actual bottom of the whole wall structure (i.e., 
elevation at the leveling pad) will extend below the exposed wall heights represented by the contour lines on the 
grading plan.  The actual bottom of the wall elevation will depend on the number of buried blocks.  The number of 
buried or embedded blocks is generally determined by the wall design engineer and is a function of the height of the 
wall and the geometry of the slope at the front of the wall, as discussed in Section 5.5.2.  Table 5-1 has minimum 
wall embedment depths for various conditions at the toe of the wall.

Contour lines are shown in 1-ft (305 mm) or (more often) 2-ft (610 mm) increments.  Some grading plans will have 
the top and bottom of wall elevations called out at a number of locations along the wall.  If this is the case, the wall 
designer should be satisfied that the called out elevations correspond to the contour lines at the given wall locations.  
Conflicts between callouts and grades should be addressed and clarified by the design professional that prepared the 
grading plan so the wall design engineer has accurate knowledge of planned wall heights before proceeding with their 
analysis. Contour lines will also give the designer information on the extent and angle of toe and back slopes.

4.2.5:  Loading Features

Loading features such as parking areas, embankments, buildings, and detention ponds should all be indicated on the 
grading plans.  It is important to identify these structures and their loading influence on the retaining wall.  The plan 
on Figure 4-1 clearly shows the parking areas, the building locations, and the detention pond location with respect 
to the retaining wall.  It is the wall design engineer’s responsibility to assign the appropriate surcharge loading to the 
retaining wall for the design phase.  Therefore, accurate information regarding planned features and their locations 
around the planned retaining walls is needed.  

4.2.6:  Miscellaneous Features

The wall design engineer must be able to identify other features on the plan that may affect the layout and ultimately 
the design of the retaining wall.  For example, as mentioned earlier, the SRW on the plan on Figure 4-1 will be 
used in combination with a cast-in-place concrete wall to define a detention pond area.  As a consequence of this, 
the SRW will abut the cast-in-place concrete wall at two locations.  The designer must be aware of this feature and 
build it into the final design.
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4.2.7:  Scale

If the retaining wall designer is to scale distances off the grading plan, steps must be taken to ensure that the scale on 
the drawing is the right one.  The designer must make sure that the scale has been labeled properly and, if possible, 
compare it to some known distance on the grading plan.

4.2.8:  Additional Information

The grading plan is the first source of information required to layout the retaining wall.  Additional important 
information may be required if, for example, there are utilities located adjacent to the retaining wall.  In this case, it 
will be necessary to determine the depth and size of the utilities.  This information is usually found on Utility Plan/
Profile sheets.  Also, in some instances, Retaining Wall Profile sheets are available.  The wall design engineer must 
remember that these profiles usually reflect final grades and do not take into account the modular block embedment 
or the dimensions of the modular block.  Also, the wall design engineer must verify that the beginning and end of 
the wall on the profile sheets correspond to the definition given above.  

The civil engineer is encouraged to create and provide Retaining Wall Profiles whenever possible.  Without getting 
into the details of the retaining wall design (i.e., foundation steps, block layout, reinforcement layout, embedment, 
etc…) the civil engineer could provided a profile showing top grade and bottom grade as shown on Figure 4-4.  This 
would provide the wall design engineer a point of verification.

The wall design engineer now has enough information to layout the retaining wall, which is the next important step 
in the design process.

Section 4.3:  Retaining Wall Layout

Based on the information obtained from the grading (and other) plans, the designer now has the following 
information:

●● Length of retaining wall,
●● Dimensional features of the retaining wall such as inside/outside corners or bends,
●● Grade at the top and at the bottom of the wall,
●● Toe slopes and/or back slopes,
●● Location and dimension of buried utilities, as well as wall penetrations,
●● Loading conditions such as live and/or dead loads, length and angle of top of wall embankments, and
●● Miscellaneous features that affect the geometry of the retaining wall.

With this information, the designer can know generate a retaining wall profile.  The drawing on Figure 4-5 represents 
a profile or elevation drawing of the retaining wall (Wall B) represented on Figure 4-1.  The next step in the 
layout process is to estimate the location of the reinforcement based on maximum recommended spacing of the 
reinforcement and constructability.  As much as possible, the reinforcement layers are aligned laterally for ease 
of installation.  The drawing on Figure 4-6 illustrates the elevation drawing with the initial configuration of the 
reinforcement.

Section 4.4: Design

The next step in the process is to determine the length and type of reinforcement, confirm the spacing of the 
reinforcement, and verify that the facing requirements are met.  This is addressed in Sections 5 through 9 of this 
manual.  In these sections, the designer is introduced, in a detailed manner, to the procedures involved in the design 
of reinforced-soil retaining walls with modular block facings.  In this manual, the designer is shown how to satisfy 
external and internal requirements as well as verify the stability of the facing units under various types of loading 
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conditions, including seismic (or dynamic).  The designer will also be introduced to Internal Compound Stability (ICS) 
analysis in which failure of the retaining wall due to a series of circular failure planes generated within a given distance 
behind the wall and exiting at the face of the wall is analyzed.

Although the content of these sections describe a comprehensive procedure for design of reinforced-soil retaining 
walls, it is not all-inclusive.  The final design of a retaining wall requires the participation of other professionals that 
will investigate and address such items as:

●● Foundation soil competency,
●● Settlement, and
●● Global stability.

These items are outside the scope of the retaining wall designer and, as such, are not addressed in this manual.  That 
is not to say that the designer will not get involved in some of these subjects, but the responsibility of the designer 
as far as this manual goes, is limited to requirements stated above.  The roles and responsibilities of the different 
professionals responsible for the design and implementation of SRW retaining walls on a given project are covered 
in Section 3 of this manual.

Finally, from a technical point of view, the height to which SRWs can be built is limitless.  From a practical point 
of view, however, experience with very high (>50 ft (15 m)) retaining walls is limited.   Although SRWs have been  
successfully built in excess of this height, the knowledge and experience with the behavior of these structures 
at these heights is continued to be collected.  The retaining wall designer should be aware that new and unique 
challenges are confronted at these heights.
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SECTION 5
SEGMENTAL RETAINING WALL DESIGN OVERVIEW

Segmental retaining walls are divided into two groups of gravity retaining walls illustrated graphically in 
Figure  5-1.

Conventional SRWs are structures that resist external destabilizing forces, due to the retained soils, solely 
through the self-weight and batter of the SRW units. 

Reinforced Soil SRWs are composite systems consisting of SRW units in combination with a mass of reinforced 
soil stabilized by horizontal layers of geosynthetic reinforcement materials.

Figure 5-1:  Gravity Wall Concept
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Common to both types of structures are dry-stacked segmental units that are typically constructed in a running bond 
configuration as shown in Figure 2-1.  The majority of SRW units available on the market are typically dry-cast, 
machine produced concrete without internal steel reinforcement. 

Section 5.1:  Conventional SRW Concepts

Conventional SRWs are separated into single depth and multiple depth categories (Figure 2-1A).  The maximum wall 
height that can be constructed using a single depth unit is directly proportional to its weight, width, inter unit shear 
strength, and vertical batter of construction for any given soil and site geometry conditions.  The maximum height 
can be increased by implementing a conventional crib wall approach using multiple depth units to increase weight 
and width of the wall; however, the design of these walls is not specifically covered in this manual.  Additionally, 
more complex modes of failure are related to these types of structures.

Section 5.2:  Reinforced SRW Concepts

Reinforced-soil SRWs utilize geosynthetic or metallic reinforcement to enlarge the effective width and weight of the 
gravity mass. The use and design of metallic reinforcement is not addressed in this manual. Geosynthetic reinforcement 
materials are high tensile strength, polymeric sheet materials.  Geosynthetic reinforcement products may be geogrids 
or geotextiles, though most SRW construction to date has used geogrids.  The geosynthetic reinforcement extends 
through the interface between the SRW units and into the soil to create a composite, gravity-mass structure. This 
enlarged composite gravity wall system, comprised of the SRW units and the reinforced soil mass, offers the required 
resistance to external forces associated with taller walls, surcharged structures, or more difficult soil conditions. 

A reinforced soil mass is somewhat analogous to reinforced concrete in that the mechanical properties of the mass 
are improved by reinforcement placed parallel to the principal strain direction to compensate for soil’s lack of 
tensile resistance. The improved tensile properties are a result of the interaction between the reinforcement and the 
soil. The composite material has the following characteristics:

●● Stress transfer between the soil and reinforcement takes place continuously along the reinforcement.  
●● Reinforcements are distributed throughout the soil mass with a degree of regularity and must not be localized.

Stresses are transferred between soil and reinforcement by friction and/or passive resistance depending on reinforcement 
geometry. Friction develops at locations where there is a relative shear displacement and corresponding shear stress 
between the soil and reinforcement surface. Passive resistance occurs through the development of bearing type stresses 
on “transverse” reinforcement surfaces normal to the direction of the soil reinforcement relative movement. 

The contribution of each transfer mechanism for a particular reinforcement will depend on the roughness of the surface 
(skin friction), normal effective stress, grid opening dimensions, thickness of the transverse members, and elongation 
characteristics of the reinforcement. Equally important for interaction development are the soil characteristics, including 
grain size, grain size distribution, particle shape, density, water content, cohesion, and stiffness [Ref. 58].

Section 5.3:  Potential Failure Modes for Segmental Retaining Walls

Both conventional gravity and reinforced soil SRWs function as gravity structures by relying on self-weight of the 
wall system to resist the destabilizing forces due to the retained soil and surcharge loadings on the structure.  The 
gravity wall concept is illustrated in Figure 5-1.  To be stable, the gravity wall structure must form a coherent mass 
(weight) that has sufficient width to prevent both sliding at the base and overturning of the mass about the toe of 
the structure under the action of lateral earth forces.  The wider and heavier Mass 2, in Figure 5-1, is more stable 
when compared to the more slender Mass 1.  The stability of these masses also can be somewhat improved by 
constructing a wall with an inclined face as described in Section 6 and 7.  Many of the design calculations described 
in the manual are focused on establishing the minimum base width of the gravity mass required to ensure stability 
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against sliding and overturning/rotation.  The design methodologies presented herein are conceptually similar to the 
method used for any established gravity retaining wall structure such as: concrete, steel bin, etc.  

For both conventional gravity and reinforced soil SRWs, the wall design engineer should evaluate forces acting on 
the boundary of the gravity mass through external stability calculations.  Also, for all types of SRWs, the wall design 
engineer should analyze local stability of the dry-stacked column of SRW units.  For reinforced soil SRWs, internal 
stability analyses are also required to ensure there is adequate strength and width to create a stable, monolithic 
gravity mass.  For reinforced soil SRWs, the wall design engineer should analyze internal compound stability, 
which evaluates potential for failures that start behind the wall and also pass through the internal structure of the 
reinforced soil mass. For larger projects that have separate design professionals for each aspect of engineering, the 
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owner or owner’s representative should ensure the site civil and geotechnical engineer evaluate the area surrounding 
the SRW for outside concerns that may affect the wall such as surface drainage, groundwater, excessive foundation 
settlement, and potential global/overall slope instability.

A summary of potential failure modes for conventional SRW structures and reinforced soil SRW structures are 
provided in Figures 5-3 and 5-4. Details of the stability calculations that are carried out with respect to each failure 
mode are described in subsequent sections of this manual. A flow chart for the design methodology and calculations 
associated with conventional and reinforced soil SRWs is presented in Figure 5-2.

5.3.1:  External Stability

External stability calculations address sliding and overturning failure modes for both conventional and geosynthetic 
reinforced SRWs. The potential for sliding of the SRW is a function of the shear strength of the retained soil, weight 
of the SRW system, and friction that develops between the wall system and the foundation soil. The overturning 
failure mode considers the potential for the SRW to tip over due to the lateral pressures exerted on the back of the 
SRW system (Figures 5-3 and 5-4). Also, external to any structure, bearing capacity, settlement, and slope stability 
are additional concerns, as discussed in Section 5.3.5.  For larger projects that have separate design professionals 
for civil, geotechnical, and wall design engineer contracts, the evaluation of bearing capacity, settlement and slope 
stability are generally considered the geotechnical engineer’s responsibility.

5.3.2:  Internal Stability

There are three modes of failure for internal stability of geosynthetic reinforced SRWs and one mode of failure 
for conventional SRWs. Internal stability analysis is considered the responsibility of the wall design engineer. 
Conventional SRWs must have enough internal shear capacity between SRW units to withstand lateral pressures 
without shearing failures occurring between units (Figure 5-3B). Geosynthetic reinforced SRWs must have adequate 
capacity to withstand lateral pressures so that sliding at any reinforcement layer does not occur. The reinforcement 
must have adequate strength so that rupture of the reinforcement is prevented and the length of the reinforcement 
must be sufficient enough to prevent pullout of the reinforcement from the reinforced soil mass (Figure 5-4B).

5.3.3:  Facing Stability

For reinforced SRWs, the connection between the geosynthetic reinforcement and the SRW units must have adequate 
strength to prevent failure of the connection. In addition, the upper layer of reinforcement must be close enough 
to the top of the wall to preclude local overturning failure of the upper, unreinforced section of wall units (crest 
toppling) (Figure 5-4C).

5.3.4:  Internal Compound Stability

For reinforced walls, internal compound stability (ICS) analysis is also evaluated for failure planes that begin behind 
a reinforced SRW and then pass through the internal structure of the wall system, exiting out the wall face. External 
stability analysis assumes the reinforced soil of a SRW behaves as a coherent mass against pressures from a failure 
wedge of soil directly behind the wall. Internal stability ensures reinforced mass is stable against internal stresses 
from a failure wedge within the reinforced soil. Neither of these stability analyses explicitly addresses circular failure 
planes starting behind the wall and passing through the weakest zones of the reinforced soil and wall face, if the 
reinforced mass is not designed with sufficient internal stability to act as a coherent mass against these failure planes. 
Internal compound stability analysis provides explicit evaluation of these potential compound failure planes. 

The reinforced SRW’s resistance to internal compound stability failure planes is a function of reinforcement length, 
strength, and vertical spacing; soil shear strength of the reinforced fill; and the shear strength between SRW units 
(Figure 5-4D). 
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Figure 5-3:  Main Modes of Failure for Conventional SRWs
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ICS is evaluated by the method of slices, in a manner similar to slope stability methods, but differs from global analysis 
because ICS does not review deep-seated foundation stability below the SRW nor the stability of extensive slopes 
and loading conditions far behind the wall. Also, the geometry of the soil in front of the wall, such as a toe slope, is 
not addressed or accounted for in ICS. Instead, ICS simply evaluates the stability of the SRW against retained earth 
pressures directly behind the wall. ICS only considers compound failures planes that begin approximately twice the 
height behind the wall, and then pass through the reinforced soil mass and exit out the wall face, see Section 8.
	

5.3.5:  Geotechnical Concerns

Both conventional and geosynthetic reinforced SRWs should have stable foundations that provide adequate bearing 
capacity and will not have detrimental settlement or global or deep seated instability. For reinforced SRWs, the 
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Figure 5-4:  Main Modes of Failure for Reinforced-Soil SRWs
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foundation soil under the entire reinforced wall system must be able to support the bearing pressures from the 
entire width of the reinforced soil mass, which will typically be slightly more than the self-weight of the soil 
fill. The wall design engineer should estimate the anticipated bearing pressures from the wall system while the 
geotechnical engineer will generally determine bearing capacity and estimated settlement of the foundation soils. 
The global stability around a SRW is a function of many factors including wall geometry, site grading, subsurface 
conditions, loading, and adjacent structures. Figures 5-3C and 5-4E show global stability failure modes.  Typically, 
the geotechnical engineer is responsible for the global stability analysis for a project site, including around SRWs. 
Often a slope stability issue around a reinforced SRW can be addressed by increasing the length of the geosynthetic 
reinforcement. So the geotechnical engineer often will need to closely coordinate global stability corrections with 
the wall design engineer.

Section 5.4:  Earth Pressure and Forces

Earth forces acting on conventional and reinforced soil SRW structures are calculated using Coulomb earth pressure 
theory when using the NCMA design methodology.  Coulomb earth pressure theory has been adopted for the 
following reasons:

●● The theory offers a consistent approach for all SRW types and is used for both internal and external stability 
analyses in reinforced soil segmental retaining wall structures.

●● Geometry that includes a wall facing batter and backslope is included explicitly.
●● Coulomb theory allows the influence of interface shear to be included in the calculation of earth 

pressures.  Fully-mobilized interface shear can reduce the magnitude of earth forces developed behind 
SRW structures.  

●● A large body of empirical evidence is available in published literature that shows that Rankine active earth 
pressure theory over-estimates the internal forces acting on geosynthetic reinforced soil retaining walls 
[Refs. 31, 32, 33, 37, 42 and 43].  Furthermore, conventional Rankine theory cannot directly account for the 
typical condition of an inclined wall face and concrete-soil interface friction behind the facing units that is 
characteristic of segmental retaining wall structures, which tends to reduce applied earth pressure.

Coulomb theory assumes the soil adjacent to the sloped or vertical wall face is at a state of limiting equilibrium 
along a planar failure surface propagating from the heel of the wall into the retained soil mass.  In other words, the 
soil is at a condition of incipient failure and the shear resistance (either JK internally or MN externally in Figure 5-5) 
is described by a Mohr-Coulomb failure criterion (Equation 2-1) using shear strength parameters (c = 0, ϕ > 0), at 
every location on the failure surface (Figure 5-5).

The state of incipient collapse for the wedge of soil immediately behind the wall (either IJK for non-reinforced walls 
or MNP for reinforced walls, Figure 5-5) is assumed to be developed by a small outward movement (yielding) of 
the dry-stacked column of SRW units or the reinforced soil mass, respectively.  The soil behind the wall is assumed 
to be in an “active state” due to outward movement of the wall with respect to the infill and/or retained soils.  The 
active state represents the condition of the soil that gives the minimum possible lateral earth pressure on a retaining 
wall structure.

Based on classical soil mechanics principles, the soil in front of the wall may be assumed to be in a “passive state” 
where incipient failure of the soil in front of the wall (if any) has been caused by the outward movement of the SRW 
structure into the soil mass (i.e., lateral compression).  The influence of passive earth pressures on the stability of 
reinforced and unreinforced SRW structures is conservatively ignored.  The reason for this is the depth of the soil in 
front of the wall structure might not be present over the design life of the structure.  In addition, neglecting passive 
earth pressure simplifies stability calculations while resulting in a structure that is marginally more conservative 
(i.e., slightly lower factors of safety for external failure modes than would be the case if passive earth pressures 
were considered).
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Coulomb theory is used to relate the lateral earth pressure to vertical pressure for the “active” case as illustrated by 
the following expression:

	 a a vKσ = σ 	 [Eq. 5-1]
where:
	 σa	 =	 the lateral earth pressure for active state below the surface of the soil mass.
	 σv	 =	 the vertical pressure at depth z below the surface.
	 Ka	 =	 coefficient of active earth pressure.

The vertical pressure due to soil self-weight σv (commonly referred to as overburden pressure) at any location in 
SRW structures should be calculated as:
	
	 v zσ = γ 	 [Eq. 5-2]

where z is the depth below the surface of the soil mass (i.e., top of wall) and γ is the unit weight of soil.

Figure 5-5:  Earth Pressure Distribution and Force Resolution SRW Systems

NCMA Analytical Assumptions
Ps

P    = sH

sP

(δ  − ω)e

sVP

PsH

α +

β

M

P
J

O K
N

I

H

Z ω

α

L

ω
+

Geosynthetic Reinforcementor base width

Potential 
failure plane

Potential failure
plane

h

1.  based on Coulomb earth pressure theory.
2.  Wall friction     =lower     or     ;δe φi φe δ  = 2/3i φi

3.  P    cos s (δ  − ω)e

P    = sV P    sin s (δ  − ω)e

4.      based on expanded structure height (H + h)Pa

5.  Active earth pressure      for internal stability calculated
     in the same manner but based on structure height       .

P's
(H)

Note: 1 Vertical wall face for external stability of multiple depth SRWs.
2 Inclined wall face for external stability soil reinforced SRWs.

i

1
2

Friction
forces

+

e

sHP'

P'sV
P's

(δ  − ω)e



Segmental Retaining Walls Design Overview� 51

In general, the orientation of the lateral active earth pressure calculated using Equation 5-1 is not horizontal but is 
included at an angle to the surface against which earth pressures act (Figure 5-5).  The orientation of earth pressures 
and forces is discussed in the following section.

5.4.1:  Active Earth Pressure Coeffecient

The coefficient of active earth pressure Ka is calculated as:
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( ) ( ) ( )
( ) ( )

2

2

2
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sin sin
cos cos 1

cos cos

aK
φ + ω

=
 φ + δ φ - b

ω ω - δ + 
ω - δ ω + b   	

[Eq. 5-3]

The quantity ϕ in this equation is the peak internal friction angle of the reinforced and/or retained soil, δ is the 
interface friction angle, and ω is the wall facing batter.  The backslope angle (β) is taken with respect to the 
horizontal and is positive in a counter-clockwise direction (Figure 5-5).

The values for δ, β, and ϕ used in this equation will vary depending on type of wall (conventional or reinforced); 
and for reinforced walls, type of analysis (external or internal).

The calculation of coefficient Ka according to Equation 5-3 assumes that fully mobilized shear stresses may develop 
along the (interface) surface upon which active earth pressures act due to relative shear movement of the soil 
particles against the surface (PN and IK, Figure 5-5).  The result of fully-mobilized interface shear is that active 
pressures will act at angle δ - ω with respect to the horizontal. 

Conventional geotechnical engineering practice is to assume the relative soil movement is downward for the active 
earth pressure condition and consequently the angle α has a positive (counter-clockwise) orientation as illustrated 
in Figure 5-5. 

For the case of a horizontal backslope (β = 0, δ = 0) and a vertical wall surface (ω = 0), the coefficient of active 
earth pressure becomes:

	

1 sin
1 sinaK - φ

=
+ φ 	

[Eq. 5-4]

These equations are restricted to β < ϕ,  which in practical terms avoids the possibility of translational failure of the 
soils above the top of wall.  The sign convention adopted in this manual is that the facing angle (ω) is taken with 
respect to the vertical and is positive in a clockwise direction (i.e., rotation into wall fill soils, Figure 5-5).
 

5.4.2:  Failure Surface Orientation, α

The orientation (α) of the critical Coulomb failure surface with respect to the horizontal may be determined generally 
using Equation 5-5 [Ref. 23]. The δ, β, and ϕ used in this equation will vary depending on type of wall (conventional 
or reinforced); and for reinforced walls, type of analysis (external or internal). Specific calculations of α for each of 
these cases are provided in Sections 6 and 7.
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[Eq. 5-5]
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The evaluation of anchorage capacity is important to maintaining a monolithic gravity mass in the tied-back wedge 
(see IJK, Figure 5-5) method of analysis.  

For the case of a horizontal backslope β = 0, δ = 0 and a vertical wall surface ω = 0 the orientation of the critical 
failure surface reduces to the Rankine solution:

	
45 2

φα = +
	

[Eq. 5-6]

5.4.3:  Interface Friction Angle, δ

Movement between masses along a surface generates shear stresses due to friction.  Incorporation of these friction 
forces in determining the Coulomb active earth pressure and orientation of earth forces has been illustrated above 
and represented as a friction angle, δ.  Determination of this friction angle can be done by either field or laboratory 
testing.  Such testing, however, is often cost prohibitive and the interface friction angles can be estimated from 
literature [Refs. 12, 17 and 23]. The value of δ will vary depending on wall type (conventional or reinforced) or type 
of analysis for reinforced wall (external or internal).  Generally, δ is a function of the friction angle of the soil(s) 
acting at the interface of the calculated earth pressures and the portion of the wall those earth forces are acting on. 
Calculations of δ for specific cases (δc, δe and δi) are provided in Sections 6 and 7.

The basis for incorporation of δ is to accurately reflect the earth force magnitude and orientation. To ensure this 
assumption is correct and the analytical approach presented in this manual is applicable, the requirement that ω < δ 
must be met. In addition, the requirement that ω must be less than 20° ( ω < 20°) generally insures the requirement 
is met for most soils.
 

5.4.4:  Horizontal and Vertical Components

The earth pressures act an angle as shown in Figure 5-5 so these pressures are broken into horizontal and vertical 
components for calculation of forces acting on the wall. The portion of forces for each component is determined by 
multiplying by the following factors: 

	 horizontal components		  cos (δ - ω )
	 vertical components		  sin (δ - ω )

The horizontal components of earth forces destabilize walls while the vertical components stabilize. As a 
conservative, simplifying assumption, this methodology ignores vertical components in the internal stability 
analysis of reinforced walls but calculates both horizontal and vertical components for the external analysis of 
conventional and reinforced walls. Accounting for both the horizontal and vertical components provides the 
most complete analysis.  Also, the consideration of vertical components can significantly improve sliding and 
overturning stability results. This allows a reduction of base geogrid lengths, which is particularly prominent when 
a backslope is present at top of wall. 

The wall designer and geotechnical engineer should be aware of the additional geotechnical stability issues that 
may arise for SRWs with narrower reinforced base widths when accounting for vertical components. These length 
reductions may often be later over-ridden by a length increases required to address global stability around the SRW. 
Neglecting the vertical load components in the wall design, however, should never be construed as automatically 
satisfying all global stability issues around an SRW, even in simple geometries. Just as with any type of planned 
structure or retaining wall, the subsurface conditions around a SRW should be evaluated by means of a geotechnical 
investigation to determine if the foundation and global stability is sufficient.
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Section 5.5:  Design Height and Embedment

Determining the design height of a SRW and the consequent forces over that wall height involve two factors: the 
exposed height H ′ of the planned grade change and the amount of wall embedment Hemb. With these, the wall design 
engineer can determine a design height.

5.5.1:  Design Height for SRWs

The design wall height H for a SRW is the total wall height measured vertically from the wall base (bottom of units, 
top of leveling pad) to the finished grade at the top of the wall.  The design height H includes the exposed height  
H ′ above finish grade and the wall embedment (Hemb) below finish grade.  As discussed in Section 4, the wall profile 
generated from a grading plan provides the proposed exposed height H ′ and the wall embedment Hemb is determined 
as discussed below in Section 5.5.2. In this manual, the earth forces loading a wall are calculated over the total wall 
height H, essentially ignoring any stability the wall embedment might provide. This conservatively ignores any 
passive resistance forces from the soil in front of the wall. 

Beyond a conservative simplification, the purpose of designing with the total height H for SRWs is to avoid relying 
on the lateral support of the soil in front of the wall given it sometimes may not be present for the life of the 
structure.  This may be a particular concern for transportation related retaining walls where paving reconstruction 
and/or excavation may occur near the bottom of the wall. 

5.5.2:  Embedment Requirements

The suggested amount of embedment varies with wall height and site conditions. The minimum wall embedment 
Hemb shall be measured vertically and determined according to Table 5-1.

Although the primary benefit of wall embedment is enhanced stability, the depth of embedment should be increased 
whenever any of the following special conditions occur:

●●    Large settlement potential or weak bearing capacity of underlying soils
●●    Steep slopes near or below the toe of the wall
●●    Potential scour at the toe of the wall in waterfront and submerged wall applications
●●    The maximum depth of seasonal soil volume change extends below the bearing pad
●●    Seismically active location

The influence of these conditions on wall performance should be addressed by a qualified geotechnical engineer 
familiar with the site soil and groundwater conditions.  In particular, steep slopes beyond the toe of the wall 
will likely create bearing and global/overall slope instability that the increased embedment in Table 5-1 will not 
address. Other strategies for addressing general foundation and global stability beneath a SRW are discussed in 
Section 12.

Table 5-1:  Minimum Wall Embedment Depth, Hemb

Slope in Front of Wall Minimum Hemb to Top of Leveling Pad

Horizontal (walls)
Horizontal (abutments)

3H:1V
2H:1V

H′/20 
H′/10 
H′/10 
H′/7 

Minimum Embedment 0.5 ft (152 mm)

Note:  H ′ is the exposed height of the SRW.



54� Design Manual for Segmental Retaining Walls 3rd Edition 

In the case of increased embedment needed to address scour or erosion concerns, the project civil engineer or a 
specialized hydrology engineer may be needed to provide estimated scour depth so the bottom of the wall can be 
extended below this depth.  See Section 11 for further discussion of civil engineering issues around SRWs.

Generally, the wall embedment depth (Hemb ) does not need to extend below seasonal frost depths or other seasonal volume 
changes.  SRWs supported on flexible granular leveling pads can accommodate movement caused by freeze/thaw cycles.  
The mortarless segmental units are free to move slightly in relation to each other without distress to the wall structure.  

If groundwater and frost susceptible soils are present at the wall base, particularly soils subject to formation of 
ice lenses, localized movement can be prevented by increasing the thickness of the leveling pad aggregate beyond 
the minimum 6 in. (152 mm). Effectively, this can extend embedment of the wall foundation beneath the frost 
line without unnecessarily increasing the design wall height (H) used for stability analysis.  This also isolates the 
foundation drain pipes from freezing.  Similarly, a moisture barrier outside the toe of the wall can prevent moisture 
migration and thereby minimize soil volume changes.  

Foundation soils susceptible to shrinking/swelling during seasonal moisture fluctuations can be addressed, at least 
partially, with the similar increases to embedment or depth of the leveling as suggested for frost susceptible soils.  

Section 5.6:  Top of Wall Conditions

The presence of slopes or additional loads at the top of a retaining wall can greatly increase the lateral earth 
pressures exerted on the wall and should be accounted for accurately. 

5.6.1:  Infinite Slopes

Slopes that extend continuously behind a wall are considered infinite slopes. Steep, continuous slopes can nearly 
double the lateral earth pressures on a retaining wall. The increase in earth pressure on a SRW is accounted for in the 
calculation of the active earth pressure coefficient Ka , which varies with β.  As explained in Section 5.4.1 Active Earth 
Pressure cofficient, an infinite slope behind a SRW cannot exceed the friction angle of the soil within the slope. This 
avoids the possibility of translational failure of the soils above the top of wall. In some cases with extensive slopes that 
continue far beyond the back of the SRW system, the stability of the top slope itself may be a concern, irrespective 
of the wall below it. The stability of such extensive slopes should be evaluated by the project geotechnical engineer. 

5.6.2:  Broken Backslopes

Slopes that crest and level off within the influence distance behind a wall will exert less load on a wall than an 
infinite slope. The impact of such a broken backslope on the reduction of active earth pressures will vary with 
conditions. In this manual, a continuous, equivalent slope angle (β′) is calculated to approximate the earth pressure 
effect of the actual geometry of the broken slope on the wall system. Determining the zone of influence distance 
behind a wall, at which a break in a slope still matters, varies with type of wall (conventional or reinforced) and, 
for reinforced walls, with type of analysis (external or internal). The method for determining the equivalent slope to 
represent the broken slope also varies with type of wall and analysis. If a broken slope crests beyond the horizontal 
distance of influence behind the wall, it is treated as an infinite slope.

The calculation of the coefficient of active earth pressure (Ka) and the failure plane (α) are modified in the case of a 
broken slope using the equivalent slope β ′ in the place of β.  The means of determining this equivalent β′  for each 
specific type of analysis (βcon , βext and βint ) is provided in Sections 6 and 7. 

When checking ICS, because this design model explicity considers the actual geometry of a broken slope, ICS does 
not need an estimated equivalent slope.
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5.6.3:  Surcharge Loading

Generally, any surcharge loads located behind the wall within a distance of twice the wall height are considered 
to load the wall. The specific zone of influence of a surcharge will vary with site and soil conditions. The 
SRW design engineer should determine whether a surcharge is close enough to the SRW to be influencing it. 
In complicated geometries, a global analysis of the whole site geometry, including surcharges, by the project 
geotechnical engineer may be needed to accurately evaluate the influence of surcharges. In this manual, for 
simplification purposes, any surcharges applied by the design engineer are simply modeled as uniform loads 
extending infinitely behind the wall.

5.6.3.1:  Live and Dead Loads 

When defining surcharge loadings, it is important to distinguish between live load (ql ) and dead load (qd ) surcharges. 
Live surcharge loadings ql are considered to be transient loadings that may change in magnitude and may not be 
continuously present over the service life of the structure. In this manual, live surcharge loadings are considered to 
contribute to destabilizing forces only, with no contributing forces that act to stabilize the structure against external 
or internal failure modes. Examples of live load surcharges are vehicular traffic and bulk material storage facilities. 

Dead load surcharges (qd ) on the other hand, are generally considered to contribute to both destabilizing and stabilizing 
forces since they are usually of constant magnitude and present for the life of the structure. The weights of a building 
or another retaining wall (above and set back from the top of the wall) are examples of dead load surcharges.

5.6.3.2:  Modeling as Uniform 

As a conservative simplification, applied surcharges considered in this manual are simply treated as uniform loads, 
starting at the back of the wall units and extending continuously behind the wall (with the exception noted below in 
Section 5.6.3.3). Whether a load is close enough to influence a SRW and thus, whether the surcharge should be present 
or absent in the analysis is to be determined by the SRW design engineer prior to beginning the wall design. In this 
manual, uniform surcharge loading (q) is used to model routine static weight loadings distributed at or above the crest of 
the wall. A dead load surcharge (qd ) could be caused by tiered retaining walls, buildings, storage tanks or outdoor bulk 
storage, etc. Uniform surcharges are also routinely used to approximate live surcharge loadings (ql ) such as dynamic 
loading due to vehicular traffic on pavements. Common live surcharge uniform magnitudes for pavement loading are:

ql	 =	 100 psf (4.70 kPa) - car and light truck traffic
ql	 =	 250 psf (11.975 kPa) - tractor trailer traffic or fire lanes, highway loadings

5.6.3.3:  Offset Surcharges

For most calculations, surcharges are treated as uniform, infinite loads starting immediately at the back of the 
wall units. For reinforced walls that have setback surcharges on level surfaces, however, the effect of this offset is 
accounted for in the facial stability calculations. Section 7.6.3 shows how an offset surcharge is eliminated from 
facial loads for SRW units above the influence zone of the offset surcharge.

Only the offset of surcharges on a level grade, on a level top of wall, or the level portion of a broken slope are 
considered as offset for purposes of this manual’s calculations. For the sloped portion of a broken slope or for an 
infinite backslope, any offset on the slope is ignored and the surcharge is treated as an infinite uniform surcharge 
starting at the back wall face. Because ICS analysis can specifically analyze actual wall conditions and geometry, the 
offset of a uniform surcharge on a level surface is also accounted for in the ICS method in this manual. Any offset 
of a surcharge is ignored for all other analysis, such as when checking external and internal stability of reinforced 
SRWs, with the surcharge treated in those calculations as starting at the back of the wall units.
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A dead load that is offset far enough behind a wall may no longer contribute to the resisting forces as is typically 
assumed. Therefore, for reinforced walls, a dead load surcharge that is setback beyond the internal failure plane or 
beyond the reinforced zone is treated essentially as a live load and is not considered to contribute to any resisting forces 
in the external, internal or local stability calculations.  Even when an offset dead load is close enough to the wall face 
to be considered contributing to the resisting forces, the stabilizing effects are only considered for the portions of the 
minimum geosynthetic length (L) that have the dead load directly over them, as detailed in Section 7.4.1.2. 

5.6.3.4:  Line Loads or Point Loads

The influence of line or point loads applied to the surface behind the crest of a SRW are not specifically addressed in 
this manual but could be incorporated into this analytical method. Line or point loads may result from heavy isolated 
footings or continuous footings constructed in close proximity to the crest of the wall. The reader should refer to 
References 1, 4, 6, 9, 12 and 19 for details on the calculation of the influence of these concentrated loadings.

5.6.3.5:  Tiers as Surcharges

Tiered or terraced walls can place significant surcharges on the lower wall if the upper tiers are not setback far enough 
to remove their influence. The influence of some simple tiered wall cases, such as one upper tier with level grades at top 
and bottom of the walls, usually can be conservatively approximated by applying the bearing pressure load of the upper 
tier as a uniform live load. This method accounts for the destabilizing effect of the upper tier and while conservatively 
ignoring the stabilizing effect the upper tier load may or may not have on the lower wall. In some cases, this may be an 
overly conservative and more involved analysis can provide a more accurate result, as described in Section 5.9.2.

Section 5.7:  Water and Drainage 

Water can increase loads on wall, be a source of scour or erosion, or decrease stability of soils around a SRW. As a 
general design approach, it is considered preferable, whenever possible, to keep water away from retaining walls 
and provide adequate drainage structures in and around walls to avoid build-up of hydrostatic pressure on walls. 

The stability calculations presented in Section 6 and 7 assume that adequate surface and subsurface drainage has 
been provided in and around the wall to evacuate any water before it can build up pressure on the wall or cause 
erosion or scour to the wall. Thus, this design method assumes there is no hydrostatic pressure on the wall in these 
stability calculations. These calculations also assume the groundwater table is located well below the base of the 
wall (i.e., greater than 0.66H, where H is the height of the wall).  Hence, all stresses are computed as total stresses 
and do not have to be modified for the influence of pore water pressure. In addition, the destabilizing effect of 
hydrostatic pressures or seepage forces is not a concern when the groundwater table is at this depth.  

Details on handling surface water and groundwater and the design of appropriate surface and subsurface drainage 
to ensure water conditions meet this methodology’s assumption that no hydrostatic pressures are present on the wall 
are presented in Sections 10, 11, and 12. Section 10 discuss drainage design within and directly around SRWs for 
wall designers guidance while Sections 11 and 12 discuss surface and subsurface drainage considerations for civil 
and geotechnical engineers, respectively.

A brief overview of some of the effects of water on walls that should be considered by design professionals are:
●● 	Surface Water—improper collection and flow of surface drainage can direct excessive amounts of water 

towards a SRW and cause erosion or over-loading of wall. Section 11 discusses considerations for the site 
civil engineer to minimize surface water issues around a SRW.

●● 	Groundwater/subsurface water—Groundwater  can  weaken  foundation soils supporting a wall and can 
increase external loads on a wall. See discussion in Sections 10 and 12 for subsurface water considerations 
for the SRW design engineer and geotechnical engineer.
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●● Subsurface drainage materials within walls and around walls—Whenever practical to avoid hydrostatic 
pressures, SRWs should be designed with sufficient drainage materials within and directly behind and 
below them, such as: gravel fill, drainage pipe, composite drainage mats and filter fabric, as discussed in 
Section 10.

●● Water bodies in front of walls—SRWs along a body of water such as a lake shoreline, river or stream 
channel, or detention/retention ponds present several special considerations including:

-  rapid draw down pressures 
-  scour 
-  fines migration 
-  foundation concerns
-  ice

These design considerations are covered in Section 10.5.

Section 5.8: Seismic Analysis

Properly designed reinforced SRWs subjected to seismic and/or dynamic loading will, in general perform well due 
to their flexible nature and enhanced ductility. When a SRW is requires seismic analysis, that evaluation should be 
done in an analysis separate from static methods, as outlined in Section 9 Seismic Design of Segmental Walls.

SRWs in seismically active zones may be subjected to both dynamic increment earth forces and inertial forces 
caused by the wall mass itself. The dynamic force is typically modeled as a pseudo-static load, in addition to the 
standard static loads. Because seismic events are short-term, some lower design requirements such as lower factors 
of safety are allowed for seismic analyses. Given such differences from static analyses, SRW seismic stability must 
be evaluated in an independent, separate analysis. However, most of resisting forces for the seismic analysis in 
Section 9 are the same as calculated in Sections 6 and 7.

It is important to note that a SRW seismic analysis must be performed in addition to, not in lieu, of the static analysis. 
Seismic analysis is not just a static analysis with higher loads; seismic analyses have lower minimum factors of 
safety, ignore live loads, and allow for higher geogrid design strengths compared to static analyses. Because of these
differences, an engineer could satisfy seismic requirements in the seismic Section 9 while, incorrectly, not meeting 
the static requirements of Section 6 and 7. So both seismic and static analyses must be performed separately, with the 
final wall design layout providing sufficient factors of safeties for both the seismic and static cases, independently.

Section 5.9:  Special Conditions

There are many conditions that may be present around a SRW that effect the stability of the SRW that are not 
specifically addressed in the standard wall design methods outlined in Sections 6 and 7. The owner or owner’s 
representative and design professionals on a project involving a SRW should give these special conditions careful 
review to ensure they are considered and addressed by the appropriate design professional(s).  A few of the more 
commonly encountered special considerations are reviewed here.

5.9.1:  Tall Walls

Taller walls often have special concerns that are not significant issues for shorter walls. Given their height, taller walls 
will influence and be influenced by a much larger portion of a site, so project design professional(s) must pay careful 
attention to site conditions well beyond the location of the SRW wall face and well below the SRW system. Layout 
issues, such as the wall batter and geosynthetic reinforcement lengths become more significant with tall walls that lose 
more space and need more space for longer reinforcement lengths, as discussed in Section 4. 

One of the primary structural concerns for taller walls is the post-construction settlement of the reinforced soil (infill). 
Even well-compacted, high-quality granular backfill will experience some post-construction settlement. Even if the 
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percentage of backfill settlement to fill height is less than one percent, this can yield significant settlement in a 30, 
40 or 50 ft (9.14, 12.19 or 15.24 m) high wall. Total settlement of wall backfill is an issue for the performance of any 
top of wall structures such as pavements. Also, the possible differential settlement between the wall face, which is 
made of uncompressible concrete SRW units, and the wall backfill soils also is an issue for taller walls because the 
differential settlement increases with height. The backfill, and the geosynthetic layers within the fill, may be pulled 
down relative to the SRW units due to this differential settlement, possibly causing damage to the geosynthetic or 
overloading of the SRW unit-geosynthetic connection. 

Design professionals’ typical strategies to address these settlement issues for taller walls may include: 
●● Increasing the relative density compaction requirements to 95 percent Modified Proctor or 98 percent 

Standard Proctor.
●● Encouraging higher levels of consistent compaction quality, including higher levels of quality control and 

quality assurance. More frequent compaction testing may be needed than for shorter walls. Installation 
practices that provide adequate performance in shorter walls, such as providing little compaction of the 
gravel fill or not strictly adhering to leveling and alignment tolerances, may need to be specifically addressed 
and improved to insure acceptable results for taller walls.

●● Thickening the minimum width of the gravel fill behind the SRW unit face up to to 3 ft (1 m) to assist in 
graduating any differential settlement between the units and the reinforced backfill soils. Sometimes the 
thickness of the gravel fill is also graduated throughout the wall height. For example, for a 45 ft (13.7 m) wall 
the gravel fill may be 3 ft (1 m) thick gravel fill for the bottom 15 ft (4.5 m) of wall, 24 in. (610 mm) thick for 
the middle 15 ft (4.5 m) of wall, and one foot (305 mm)  thick for the top 15 ft (4.5 m) of the wall.

●● Decreasing the plasticity index of the fine fraction of the backill soils down to PI < 5 to 10.
●● Requiring select granular backfill in the reinforced zone that has no more than 5 to 15% fines.
●● Providing special attention to internal and surface drainage.
●● Breaking a single tall wall into two tiered walls with the upper wall set back no more than a few feet. This 

does not significantly change the loads on the walls or the reinforcement requirements but it does allow 
the wall contractor an opportunity to reset the wall face alignment and reduces the differential settlement 
between the upper SRW units and the wall backfill. 

Whether any or all of the suggestions are needed, as well what value in these criteria ranges should be used, depends 
on the height of the wall, the on-site soil and fill soil types available, the accuracy of the site and materials data, 
local experience, anticipated quality control of installation, and the wall design engineer’s and project geotechnical 
engineer’s judgment. As an example of the range of judgment, taller walls backfilled with on-site, fine-grained soils 
are commonly successful in some regions, while in other regions the native soils properties make fine-grained soils 
unsuitable as fill for even 10 ft (3.05 m) high walls.

5.9.2:  Tiered Walls

Tiered walls often require more complex analysis than provided by standard wall stability design methods. Some 
simpler cases, however, may be conservatively modeled by the following method.

The effect of the upper tier walls is to act as a uniformly distributed load on the underlying tiers.  Generally, if a 
tiered retaining wall is placed within a horizontal distance (wall face to wall face) less than twice the height of the 
underlying wall, a load will be applied to the lower wall. This 2V:1H rule assumes that there are no slopes below, 
between or above the tiered structures and that there are reasonably competent soils. Figure 5-6 may be used to 
estimate the equivalent uniformly distributed surcharge loading applied to a lower wall by the upper wall for both 
internal and external stability analyses of a tiered reinforced soil SRW system.  If the upper tier is setback past the 
reinforced zone of the lower wall, however, it may behave more like a live load than a dead load because the vertical 
load of the upper wall is not contributing to stabilizing forces in the lower wall. 
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Figure 5-6:  Surcharge Approximation for Tiered Walls

e(1)α
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This method does not, however, account accurately for the effects of slope around or between tiered walls. The only 
way to accurately model tiers and adjacent slopes is to use conventional slope/global stability analysis methods.  
The retaining wall designer and the site geotechnical engineer must work together to ensure that all modes of failure 
are investigated for these complex structures.  For further discussion of how to model SRWs for slope stability 
analysis, see Section 12.4 Global Stability Around SRWs.

The same approach as shown in Figure 5-6 is suggested for conventional gravity SRWs except that the dimension L1 
in the figure is restricted to the base width of the SRW units (Wu ).  In both instances, the lower wall height 1H ′ , must 
be greater than the exposed height 2H ′  of the upper wall to use the approximation in Figure 5-6.  The approximation 
is also applicable to triple and quadruple tiered wall systems by starting the analysis at the lowermost wall. The 
information that is required to analyze the effects of tiered SRWs is the geometric location of one tier with respect 
to the other (i.e., H1, L1, and J from Figure 5-6).

5.9.3:  Sloping Toe Concerns

The grade at the toe of a SRW has a substantial effect on the stability of a SRW with respect to bearing capacity and global 
stability. When the grade at the toe of the wall slopes away from the wall face, the bearing capacity and global stability 
are reduced when compared to the same structure with a level grade at the toe of the wall. This reduction in stability is 
directly related to the reduction in the shear resistance along the failure surface and the reduction in the weight of soil 
stabilizing the structure.  If the groundwater is elevated at the toe of the wall, global stability of the structure may be further 
compromised. The standard wall design methods outlined in Sections 6, 7 and 8 (conventional, reinforced, and ICS) do 
not account for destabilizing effects of a toe slope on a SRW. The project geotechnical engineer should evaluate the effects 
of a toe slope on bearing capacity and slope stability around a SRW as described in Section 12.

5.9.4:  Foundation Stability

As with any structure, SRWs must be supported by foundation materials with sufficient capacity against the loads of 
the structure and that are adequate enough to avoid excessive settlement beneath the SRW. Sections 6 and 7 describe 
methods of estimating bearing pressures from SRWs and Section 12 describes geotechnical methods to estimate 
bearing capacity beneath a SRW.

5.9.5:  Global Stability

The overall stability of the soils surrounding a SRW should be evaluated to ensure global stability of the planned SRW 
and surrounding grading and structures. Often the SRW is just a portion of overall site conditions such as slopes, other 
structures, and detention ponds, which all influence the overall slope stability of a planned project. Section 12 provides a 
general overview of how a global stability analysis that includes a SRW can be evaluated by a geotechnical engineer.

Section 5.10:  Recommended Minimum Factors of Safety and Design Criteria

Selection of appropriate factors of safety should be based on the certainty with which design parameters and the 
consequences of failure are known and standard accepted engineering practice.  Table 5-2 lists the recommended 
minimum safety factors for the internal and external stability failure modes for reinforced SRWs [Ref. 59].  Table 5-2 
also provides additional applicable design criteria beyond these Factors of Safety for soil-reinforced SRWs.
	

5.10.1:  Maximum Vertical Spacing of Geogrid

It is often cost efficient, from a reinforcement materials perspective, to maximize vertical spacing between 
geogrid layers. However, even when all Factors of Safety are satisfied for internal stability, facial stability and 
internal compound stability, limiting maximum vertical spacing between layers to 24 in. (610 mm) is suggested to 
minimize construction stability issues. Some proprietary systems are capable of supporting larger spacing between 
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reinforcement layers,  however, the reinforcement spacing should not exceed 32 in. (813 mm).  The wall designer 
should choose an appropriate maximum reinforcement spacing for the proprietary system used in the design.  For 
modular blocks that are less than or equal to 10 in. (254 mm) in depth, it is recommended that the maximum vertical 
spacing of the reinforcement layers be no more than twice the depth of the unit.  Reguardless of the spacing of the 
reinforcement, compaction of the reinforced backfill/retained soil must never exceed 8 in. (203 mm) in thickness.

5.10.2:  Minimum Geogrid Length

In this manual, a minimum length of reinforcement to height of wall ratio (L/H) of 0.6 has been established.  For 
most cases, depending on soil shear strength characteristics, this value is sufficient to meet internal and external 
requirements.  When a backslope and/or toe slope is present, or an extra-ordinary loading condition exists, frequently 
the L/H ratio of 0.6 does not satisfy minimum factors of safety.  It is not uncommon for L/H ratio to exceed 1.0 for 
a wall with a 2H:1V backslope.  Internal Compound Stability analysis in this manual will go a long way to prevent 
inadequate reinforcement lengths, however, this does not replace the need to carry out a full global stability analysis.  
In addition, it is recommended that the absolute minimum value for L be 4 ft (1.2 m).

5.10.3:  Maximum Wall Height

The design and construction of retaining walls in excess of 50 ft (15.24 m) have become more common.  Terraced 
and single-height retaining walls in excess of this height have also been constructed.

While there is no theoretical maximum height for a properly designed geosynthetic-reinforced SRW there are some 
practical concerns with taller walls as discussed in Sections 4.4 and 5.9.1 that should be addressed. 
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5.10.4:  Factors of Safety and Design Criteria Summary

Table 5-2:  Recommended Minimum Factors of Safety and Design Criteria for Conventional/
Reinforced SRWs (1, 2, 3, and 4)

Failure Modes
Wall Design
Base Sliding	
Overturning
Internal Sliding
Tensile Overstress 
Pullout 
Connection
Internal Compound Stability

FSsl
FSot

FSsc /FSsl(i)
FSto
FSpo
FScs
Fcom

Static 

1.5
1.5/2.0

1.5
1.5
1.5
1.5
1.3

Seismic 

1.1
1.1
1.1
1.1
1.1
1.1
1.1

Geotechnical Concerns
Bearing Capacity
Global Stability

FSbc
FSgl

2.0
1.3-1.5

1.5
1.1

Other Wall Design Criteria

Minimum Reinforced Zone Width
Minimum Wall Embedment
Minimum Anchorage Length
Maximum Wall Batter

L
Hemb
La
w

0.6H (5)

0.5 ft (152 mm)  (6)

1.0 ft (305 mm)
20 degrees

NOTES:
1.	 The minimum factors of safety given in this table assume that stability calculations are based on measured site-specific soil/wall 

data.  Measured data are defined as the results of tests carried out on actual samples of soils and geosynthetic products at the proposed 
structure and actual samples of masonry concrete units (i.e., the same molds, forms, mix design and infill material or same broad soil 
classification type (e.g. G, S, if applicable).

2.	 When estimated data is used, the designer may need to use larger factors of safety than those shown in this table or conservative estimates of 
parameter values.  Estimated data includes bulk unit weight and shear strength properties taken from the results of ASTM methods of testing 
(or similar protocols) carried out on samples of soil having the same USCS classification as the project soil and the same geosynthetic product.

3.	 Estimated data for facing shear capacity and connection capacity analyses shall be based on laboratory tests carried out on the same 
masonry concrete unit type under representative surcharge pressures for the project structure (and the same broad soil classification 
type, e.g. G, S, if applicable).

4.	 To determine maximum unreinforced wall height, determine height to which factors of safety for conventional SRWs are satisfied.
5.	 Minimum reinforcement length is 0.6H and must meet minimum requirements above. 
6.	 Wall embedment to be determined as per Table 5-1 and must meet minimum requirements above.
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●● Subsurface drainage materials within walls and around walls—Whenever practical to avoid hydrostatic 
pressures, SRWs should be designed with sufficient drainage materials within and directly behind and 
below them, such as: gravel fill, drainage pipe, composite drainage mats and filter fabric, as discussed in 
Section 10.

●● Water bodies in front of walls—SRWs along a body of water such as a lake shoreline, river or stream 
channel, or detention/retention ponds present several special considerations including:

-  rapid draw down pressures 
-  scour 
-  fines migration 
-  foundation concerns
-  ice

These design considerations are covered in Section 10.5.

Section 5.8: Seismic Analysis

Properly designed reinforced SRWs subjected to seismic and/or dynamic loading will, in general perform well due 
to their flexible nature and enhanced ductility. When a SRW is requires seismic analysis, that evaluation should be 
done in an analysis separate from static methods, as outlined in Section 9 Seismic Design of Segmental Walls.

SRWs in seismically active zones may be subjected to both dynamic increment earth forces and inertial forces 
caused by the wall mass itself. The dynamic force is typically modeled as a pseudo-static load, in addition to the 
standard static loads. Because seismic events are short-term, some lower design requirements such as lower factors 
of safety are allowed for seismic analyses. Given such differences from static analyses, SRW seismic stability must 
be evaluated in an independent, separate analysis. However, most of resisting forces for the seismic analysis in 
Section 9 are the same as calculated in Sections 6 and 7.

It is important to note that a SRW seismic analysis must be performed in addition to, not in lieu, of the static analysis. 
Seismic analysis is not just a static analysis with higher loads; seismic analyses have lower minimum factors of 
safety, ignore live loads, and allow for higher geogrid design strengths compared to static analyses. Because of these
differences, an engineer could satisfy seismic requirements in the seismic Section 9 while, incorrectly, not meeting 
the static requirements of Section 6 and 7. So both seismic and static analyses must be performed separately, with the 
final wall design layout providing sufficient factors of safeties for both the seismic and static cases, independently.

Section 5.9:  Special Conditions

There are many conditions that may be present around a SRW that effect the stability of the SRW that are not 
specifically addressed in the standard wall design methods outlined in Sections 6 and 7. The owner or owner’s 
representative and design professionals on a project involving a SRW should give these special conditions careful 
review to ensure they are considered and addressed by the appropriate design professional(s).  A few of the more 
commonly encountered special considerations are reviewed here.

5.9.1:  Tall Walls

Taller walls often have special concerns that are not significant issues for shorter walls. Given their height, taller walls 
will influence and be influenced by a much larger portion of a site, so project design professional(s) must pay careful 
attention to site conditions well beyond the location of the SRW wall face and well below the SRW system. Layout 
issues, such as the wall batter and geosynthetic reinforcement lengths become more significant with tall walls that lose 
more space and need more space for longer reinforcement lengths, as discussed in Section 4. 

One of the primary structural concerns for taller walls is the post-construction settlement of the reinforced soil (infill). 
Even well-compacted, high-quality granular backfill will experience some post-construction settlement. Even if the 
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percentage of backfill settlement to fill height is less than one percent, this can yield significant settlement in a 30, 
40 or 50 ft (9.14, 12.19 or 15.24 m) high wall. Total settlement of wall backfill is an issue for the performance of any 
top of wall structures such as pavements. Also, the possible differential settlement between the wall face, which is 
made of uncompressible concrete SRW units, and the wall backfill soils also is an issue for taller walls because the 
differential settlement increases with height. The backfill, and the geosynthetic layers within the fill, may be pulled 
down relative to the SRW units due to this differential settlement, possibly causing damage to the geosynthetic or 
overloading of the SRW unit-geosynthetic connection. 

Design professionals’ typical strategies to address these settlement issues for taller walls may include: 
●● Increasing the relative density compaction requirements to 95 percent Modified Proctor or 98 percent 

Standard Proctor.
●● Encouraging higher levels of consistent compaction quality, including higher levels of quality control and 

quality assurance. More frequent compaction testing may be needed than for shorter walls. Installation 
practices that provide adequate performance in shorter walls, such as providing little compaction of the 
gravel fill or not strictly adhering to leveling and alignment tolerances, may need to be specifically addressed 
and improved to insure acceptable results for taller walls.

●● Thickening the minimum width of the gravel fill behind the SRW unit face up to to 3 ft (1 m) to assist in 
graduating any differential settlement between the units and the reinforced backfill soils. Sometimes the 
thickness of the gravel fill is also graduated throughout the wall height. For example, for a 45 ft (13.7 m) wall 
the gravel fill may be 3 ft (1 m) thick gravel fill for the bottom 15 ft (4.5 m) of wall, 24 in. (610 mm) thick for 
the middle 15 ft (4.5 m) of wall, and one foot (305 mm)  thick for the top 15 ft (4.5 m) of the wall.

●● Decreasing the plasticity index of the fine fraction of the backill soils down to PI < 5 to 10.
●● Requiring select granular backfill in the reinforced zone that has no more than 5 to 15% fines.
●● Providing special attention to internal and surface drainage.
●● Breaking a single tall wall into two tiered walls with the upper wall set back no more than a few feet. This 

does not significantly change the loads on the walls or the reinforcement requirements but it does allow 
the wall contractor an opportunity to reset the wall face alignment and reduces the differential settlement 
between the upper SRW units and the wall backfill. 

Whether any or all of the suggestions are needed, as well what value in these criteria ranges should be used, depends 
on the height of the wall, the on-site soil and fill soil types available, the accuracy of the site and materials data, 
local experience, anticipated quality control of installation, and the wall design engineer’s and project geotechnical 
engineer’s judgment. As an example of the range of judgment, taller walls backfilled with on-site, fine-grained soils 
are commonly successful in some regions, while in other regions the native soils properties make fine-grained soils 
unsuitable as fill for even 10 ft (3.05 m) high walls.

5.9.2:  Tiered Walls

Tiered walls often require more complex analysis than provided by standard wall stability design methods. Some 
simpler cases, however, may be conservatively modeled by the following method.

The effect of the upper tier walls is to act as a uniformly distributed load on the underlying tiers.  Generally, if a 
tiered retaining wall is placed within a horizontal distance (wall face to wall face) less than twice the height of the 
underlying wall, a load will be applied to the lower wall. This 2V:1H rule assumes that there are no slopes below, 
between or above the tiered structures and that there are reasonably competent soils. Figure 5-6 may be used to 
estimate the equivalent uniformly distributed surcharge loading applied to a lower wall by the upper wall for both 
internal and external stability analyses of a tiered reinforced soil SRW system.  If the upper tier is setback past the 
reinforced zone of the lower wall, however, it may behave more like a live load than a dead load because the vertical 
load of the upper wall is not contributing to stabilizing forces in the lower wall. 
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Figure 5-6:  Surcharge Approximation for Tiered Walls
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This method does not, however, account accurately for the effects of slope around or between tiered walls. The only 
way to accurately model tiers and adjacent slopes is to use conventional slope/global stability analysis methods.  
The retaining wall designer and the site geotechnical engineer must work together to ensure that all modes of failure 
are investigated for these complex structures.  For further discussion of how to model SRWs for slope stability 
analysis, see Section 12.4 Global Stability Around SRWs.

The same approach as shown in Figure 5-6 is suggested for conventional gravity SRWs except that the dimension L1 
in the figure is restricted to the base width of the SRW units (Wu ).  In both instances, the lower wall height 1H ′ , must 
be greater than the exposed height 2H ′  of the upper wall to use the approximation in Figure 5-6.  The approximation 
is also applicable to triple and quadruple tiered wall systems by starting the analysis at the lowermost wall. The 
information that is required to analyze the effects of tiered SRWs is the geometric location of one tier with respect 
to the other (i.e., H1, L1, and J from Figure 5-6).

5.9.3:  Sloping Toe Concerns

The grade at the toe of a SRW has a substantial effect on the stability of a SRW with respect to bearing capacity and global 
stability. When the grade at the toe of the wall slopes away from the wall face, the bearing capacity and global stability 
are reduced when compared to the same structure with a level grade at the toe of the wall. This reduction in stability is 
directly related to the reduction in the shear resistance along the failure surface and the reduction in the weight of soil 
stabilizing the structure.  If the groundwater is elevated at the toe of the wall, global stability of the structure may be further 
compromised. The standard wall design methods outlined in Sections 6, 7 and 8 (conventional, reinforced, and ICS) do 
not account for destabilizing effects of a toe slope on a SRW. The project geotechnical engineer should evaluate the effects 
of a toe slope on bearing capacity and slope stability around a SRW as described in Section 12.

5.9.4:  Foundation Stability

As with any structure, SRWs must be supported by foundation materials with sufficient capacity against the loads of 
the structure and that are adequate enough to avoid excessive settlement beneath the SRW. Sections 6 and 7 describe 
methods of estimating bearing pressures from SRWs and Section 12 describes geotechnical methods to estimate 
bearing capacity beneath a SRW.

5.9.5:  Global Stability

The overall stability of the soils surrounding a SRW should be evaluated to ensure global stability of the planned SRW 
and surrounding grading and structures. Often the SRW is just a portion of overall site conditions such as slopes, other 
structures, and detention ponds, which all influence the overall slope stability of a planned project. Section 12 provides a 
general overview of how a global stability analysis that includes a SRW can be evaluated by a geotechnical engineer.

Section 5.10:  Recommended Minimum Factors of Safety and Design Criteria

Selection of appropriate factors of safety should be based on the certainty with which design parameters and the 
consequences of failure are known and standard accepted engineering practice.  Table 5-2 lists the recommended 
minimum safety factors for the internal and external stability failure modes for reinforced SRWs [Ref. 59].  Table 5-2 
also provides additional applicable design criteria beyond these Factors of Safety for soil-reinforced SRWs.
	

5.10.1:  Maximum Vertical Spacing of Geogrid

It is often cost efficient, from a reinforcement materials perspective, to maximize vertical spacing between 
geogrid layers. However, even when all Factors of Safety are satisfied for internal stability, facial stability and 
internal compound stability, limiting maximum vertical spacing between layers to 24 in. (610 mm) is suggested to 
minimize construction stability issues. Some proprietary systems are capable of supporting larger spacing between 
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reinforcement layers,  however, the reinforcement spacing should not exceed 32 in. (813 mm).  The wall designer 
should choose an appropriate maximum reinforcement spacing for the proprietary system used in the design.  For 
modular blocks that are less than or equal to 10 in. (254 mm) in depth, it is recommended that the maximum vertical 
spacing of the reinforcement layers be no more than twice the depth of the unit.  Reguardless of the spacing of the 
reinforcement, compaction of the reinforced backfill/retained soil must never exceed 8 in. (203 mm) in thickness.

5.10.2:  Minimum Geogrid Length

In this manual, a minimum length of reinforcement to height of wall ratio (L/H) of 0.6 has been established.  For 
most cases, depending on soil shear strength characteristics, this value is sufficient to meet internal and external 
requirements.  When a backslope and/or toe slope is present, or an extra-ordinary loading condition exists, frequently 
the L/H ratio of 0.6 does not satisfy minimum factors of safety.  It is not uncommon for L/H ratio to exceed 1.0 for 
a wall with a 2H:1V backslope.  Internal Compound Stability analysis in this manual will go a long way to prevent 
inadequate reinforcement lengths, however, this does not replace the need to carry out a full global stability analysis.  
In addition, it is recommended that the absolute minimum value for L be 4 ft (1.2 m).

5.10.3:  Maximum Wall Height

The design and construction of retaining walls in excess of 50 ft (15.24 m) have become more common.  Terraced 
and single-height retaining walls in excess of this height have also been constructed.

While there is no theoretical maximum height for a properly designed geosynthetic-reinforced SRW there are some 
practical concerns with taller walls as discussed in Sections 4.4 and 5.9.1 that should be addressed. 
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5.10.4:  Factors of Safety and Design Criteria Summary

Table 5-2:  Recommended Minimum Factors of Safety and Design Criteria for Conventional/
Reinforced SRWs (1, 2, 3, and 4)

Failure Modes
Wall Design
Base Sliding	
Overturning
Internal Sliding
Tensile Overstress 
Pullout 
Connection
Internal Compound Stability

FSsl
FSot

FSsc /FSsl(i)
FSto
FSpo
FScs
Fcom

Static 

1.5
1.5/2.0

1.5
1.5
1.5
1.5
1.3

Seismic 

1.1
1.1
1.1
1.1
1.1
1.1
1.1

Geotechnical Concerns
Bearing Capacity
Global Stability

FSbc
FSgl

2.0
1.3-1.5

1.5
1.1

Other Wall Design Criteria

Minimum Reinforced Zone Width
Minimum Wall Embedment
Minimum Anchorage Length
Maximum Wall Batter

L
Hemb
La
w

0.6H (5)

0.5 ft (152 mm)  (6)

1.0 ft (305 mm)
20 degrees

NOTES:
1.	 The minimum factors of safety given in this table assume that stability calculations are based on measured site-specific soil/wall 

data.  Measured data are defined as the results of tests carried out on actual samples of soils and geosynthetic products at the proposed 
structure and actual samples of masonry concrete units (i.e., the same molds, forms, mix design and infill material or same broad soil 
classification type (e.g. G, S, if applicable).

2.	 When estimated data is used, the designer may need to use larger factors of safety than those shown in this table or conservative estimates of 
parameter values.  Estimated data includes bulk unit weight and shear strength properties taken from the results of ASTM methods of testing 
(or similar protocols) carried out on samples of soil having the same USCS classification as the project soil and the same geosynthetic product.

3.	 Estimated data for facing shear capacity and connection capacity analyses shall be based on laboratory tests carried out on the same 
masonry concrete unit type under representative surcharge pressures for the project structure (and the same broad soil classification 
type, e.g. G, S, if applicable).

4.	 To determine maximum unreinforced wall height, determine height to which factors of safety for conventional SRWs are satisfied.
5.	 Minimum reinforcement length is 0.6H and must meet minimum requirements above. 
6.	 Wall embedment to be determined as per Table 5-1 and must meet minimum requirements above.
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SECTION 6
	 CONVENTIONAL SEGMENTAL RETAINING WALL DESIGN

Conventional segmental retaining walls (SRWs) are gravity structures that rely solely on their weight to resist 
destabilizing forces.  There are two categories of conventional SRWs; single depth SRWs and multiple depth SRWs.  
Single depth SRWs are full gravity structures in which the height, width, weight, batter, and shear capacity of the 
SRW units determines the maximum unreinforced (no geosynthetic) SRW height for a given retained soil and 
surcharge loading condition.  Multiple depth SRWs are formed by interlocking units to create cribs or bins that are 
filled with free draining gravel adding mass to the structure. Multiple depth SRWs are not addressed specifically in 
this methodology. 

To safely determine the maximum height for unreinforced gravity SRWs the analysis and design steps summarized 
below are recommended:

●● Determine SRW unit properties, wall geometry, and soil/groundwater parameters at the site.
●● Calculate the driving forces on the structure. 
●● Calculate factors of safety for external (Figure 5-3A) and internal (Figure 5-3B) failure modes based on a 

trial design.
●● Adjust wall height to meet minimum factors of safety criteria.
●● Check global stability of the SRW system (Figure 5-3C).

Section 6.1:  Design Assumptions 

Conventional SRWs are analyzed using standard geotechnical and structural engineering methods for concrete gravity 
retaining wall structures [Ref. 36] with some refinements that reflect the unique dry-stacked unit construction.  

The design and analysis of conventional gravity SRW’s requires several assumptions and standards for consistent 
evaluation and uniform application of the generic industry methods for gravity retaining walls and the general SRW 
methods presented in Section 5.  Additionally, several design assumptions associated with the analysis have been 
made to simplify calculations. 

6.1.1:  Coulomb Earth Pressure Theory

Calculation of earth pressure is based on Coulomb’s general equation for the active earth pressure coefficient 
Ka as presented in Section 5, which overviews reasons for the use of this theory and provides a more thorough 
overview of the methods and assumptions involved in the determination of active earth pressures and forces for 
SRW stability design. Derived from these general design principles presented in Section 5, the specific equations 
and interpretations for each reinforced wall design case are detailed in Section 6.4, Equations 6-1 to 6-5.
 

6.1.2:  Loading Assumptions

This Section’s methodology makes several assumptions regarding loading and drainage that are more thoroughly 
discussed in Section 5.5 through 5.8. A brief summary of these assumptions are:

Surcharges are assumed to be simplified uniform loads starting directly behind the top wall face, with stabilizing 
effects of only dead loads, not live loads, considered. The conventional analysis in this section does not address 
offset loads or any gradual reduction in their influence with increasing setback. If a surcharge behind a conventional 
wall is offset, the wall design engineer must determine if this offset surcharge is influencing the SRW, or not, prior 
to beginning this methodology. 
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No hydrostatic pressure is assumed to be exerted on the wall because it is assumed adequate drainage has been provided 
in and around the wall to evacuate any water before pressure can build up on the wall.  Details on handling surface water 
and groundwater to ensure water conditions on site meet this assumption are presented in Sections 10, 11 and 12. 

In this section, calculations address only static loads and assume no dynamic loading from a seismic event. In a 
seismically active zone, designing for dynamic loads is done by modeling the additional seismic loads as pseudo-
static loads, as covered in detail in Section 9 Seismic Design of Segmental Retaining Walls. 

6.1.3:  Single- and Multiple-Width SRWs

This section addresses single-width SRWs only. Similar calculations can be performed on multiple-depth SRWs, 
but specific methodologies for the internal stability checks needed for the numerous types of multiple-depth SRWs 
is not addressed in this manual.  To act as a gravity mass, multiple depth structures must be physically interlocked 
together and not simply stacked with one column of block behind the other.  Multiple depth SRWs are often 
considered semi-gravity structures because their base is sometimes wider than the remainder of the structure, with 
the weight of the fill above the base contributing to the stability of the wall.  

Section 6.2:  Minimum Factors of Safety for Stability Analyses

Selection of appropriate factors of safety should be based on the certainty with which design parameters and the 
consequences of failure are known.  Table 5-2 in Section 5.10.4 lists the recommended minimum safety factors 
for the external stability, internal stability, and geotechnical failure modes for conventional SRWs (base sliding; 
overturning; internal sliding; bearing capacity; and global stability).

Section 6.3:  Segmental Unit Properties

Dimensions and mechanical properties of segmental units must be established prior to design. These parameters are:

Hu	 =	 SRW unit height (ft (m))
Hcu 	 =	 SRW unit cap (coping) height (ft (m)) 
Wu	 =	 SRW unit width (ft (m)) 
γu	 =	 weight of segmental unit per unit volume as placed (includes gravel fill) (pcf (kN/m3))
Gu	 =	 distance to center of gravity of horizontal SRW unit, including gravel fill, measured from the front 

face of the unit (ft (m))
ω	 =	 wall batter due to segmental unit setback per course (deg)
µb	 =	 interface friction coefficient for base segmental unit sliding on bearing soils 
au	 =	 apparent minimum shear capacity between segmental units (lb/ft (kN/m))
λu	 =	 apparent angle of friction between segmental units (deg) 
∆U	 =	 setback per course Hu (in. (mm))

	
Section 6.4:  External Stability

External stability modes of failure for overturning and base sliding are illustrated in Figure 6-1. All external stability 
calculations shall be performed on a wall section of unit length (1 ft (1 m)). All forces in stability analyses are expressed 
as force per unit length of wall (lb/ft (kN/m)) and moments as force-length per unit length of wall (lb-ft/ft (kN-m/m).

6.4.1:  Earth Pressures and Forces

The distribution of the earth pressures due to retained soil self-weight and surcharge loadings, which are assumed to 
act directly on the back of single depth conventional SRWs, is shown in Figure 6-2.  Because the interface friction 
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Figure 6-1:  Main Modes of Failure for External Stability
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angle between the back of the SRW units and the retained soils is assumed to not be zero, the earth pressures and 
forces do not act perpendicular to the back of the dry-stacked column of wall units.  As stated in the design overview, 
Section 5.4.3, because a downward inclined lateral pressure distribution should result from the soil resistance along 
the back of the units, the wall batter (ω) should be greater than δc , the mobilized interface friction angle at the back of 
the units of a conventional SRW (δc > ω ). This is generally satisfied for most quality soils by the overall requirement 
that ω < 20°. Also as stated in design overview Section 5.4.4, because the earth pressures act at an angle, the effect 
on the wall due to the earth forces are broken into horizontal and vertical components. The horizontal components 
of earth forces, which load the wall, and the vertical components, which stabilize the wall, are both considered in 
this manual. As a conservative simplification for analysis, however, vertical components can be ignored.

The Coulomb active earth pressure coefficient Kacon for a conventional SRW is calculated using the version of 
Equation 5-3 shown below:
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[Eq. 6-1]

where:

	 δc = 2/3 φrc	 [Eq. 6-2]

The selection of the peak friction angle for retained soil behind a conventional SRW (ϕrc ) is based on the properties 
of the weakest dominant soil material located in the distance of up to H/2 behind a conventional SRW structure. 
The term βcon is the equivalent backslope angle (from the horizontal) for a conventional SRW and is further defined 
in Section 6.4.1.1, Equations 6-4 and 6-5A/B. The term δc is the mobilized interface friction angle in degrees at the 
back of the conventional SRW units.

In the scenario when a wall is vertical with no backslope (i.e., β = 0 and ω = 0) and the designer wishes to conservatively 
ignore interface friction (i.e., δc = 0) the coefficient of active earth pressure simplifies to Equation 5-4.
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[Eq. 6-3]

6.4.1.1:  Top of Wall Geometry for Equivalent Slopes

The equivalent slope βcon for earth pressure calculations is the average slope within the influence zone behind a SRW 
and varies with top of wall geometry. The estimated horizontal distance after which a crest in a slope will no longer 
significantly reduce the soil pressure on a conventional SRW is defined as 2H back from the top of wall (at back of 
top unit).  This is the distance to which an equivalent slope is drawn. The maximum height of slope influence for 
internal analysis hmaxcon and the slope used for internal analysis βcon are calculated as follows as illustrated in Figures 
6-3 and 6-4:
	
	 max 2 tanconh H= b 	 [Eq.  6-4]
	
For Slope Case A:  	 hs < hmaxcon  (broken slope crests within 2H)
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Figure 6-3:  Broken Back Geometry—CASE A

Figure 6-4:  Broken Back Geometry—CASE B
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	 bcon = b	 [Eq.  6-5B]
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6.4.1.2:  External Earth Forces and Locations

The active earth force due to soil self-weight Ps is calculated by integrating the earth pressure expression described 
by Equation 5-1 over the wall height H to give:
	
	 Ps  = 0.5 Kacon γr H  2	 [Eq. 6-6]

and Pq is due to the uniformly distributed surcharges extending over the backfill surface and is calculated as:	

	 Pqd = qd Kacon H	 [Eq. 6-7]

	 Pql = ql Kacon H	 [Eq. 6-8]

Horizontal components

The horizontal active earth force due to soil self-weight Ps is calculated as follows:

	 PsH  = 0.5 Kacon γr  H
2 cos (δc - ω)	 [Eq. 6-9]

The horizontal active earth force due to surcharges PqH  is calculated as follows:

	 PqH = (ql + qd) Kacon H cos (δc - ω)	 [Eq. 6-10]

	
	 PqdH = qd Kacon H cos (δc - ω)	 [Eq. 6-11]

	 PqlH = ql Kacon H cos (δc - ω)	 [Eq. 6-12]

The total horizontal active earth force PaH acting at the back of the wall units is calculated as follows:

	 PaH  = PsH +  PqdH + PqlH	 [Eq. 6-13]

Vertical Components

As discussed in Section 5.4.3, the vertical components of earth force due to retained soil PsV are considered in the 
analysis as well as the vertical component of earth force due to surcharge PqV

The vertical active earth force due to soil self-weight PsV is calculated as follows:

	 PsV  = 0.5 Kacon γr  H 
2 sin (δc - ω)	 [Eq. 6-14]

The vertical active earth forces due to dead and live load surcharges PqdV  and PqlV  are calculated as follows:

	 PqdV = qd Kacon H sin (δc - ω)	 [Eq. 6-15]

	 PqlV  = ql Kacon H sin (δc - ω)	 [Eq. 6-16]

The total vertical active earth force PaV  acting at the back of the wall units is calculated as follows:

	 PaV = PsV + PqdV + PqlV	 [Eq. 6-17]
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Passive resistance developed in front of the wall is conservatively ignored for the reasons given in Sections 4.2 
and 5.4.4. 

6.4.2:  Weight of Segmental Retaining Wall

The weight (WW) of the column of SRW units on the leveling pad is based on the weight per unit volume of SRW 
units γu.  The SRW wall weight WW per lineal foot acting at the base is calculated as:

	 WW = H γu Wu	  [Eq. 6-18]

6.4.3:  Base Sliding

The external forces acting to destabilize the conventional single depth SRW are shown in Figure 6-2.

The base sliding resistance is calculated as follows:

	 Rsc = µb (WW + PsV + PqdV) tan φ	 [Eq 6-19]

The soil strength parameter ϕ should be selected according to the soil type upon which the bottom SRW unit is 
founded.  Normally, this will be an aggregate leveling pad ϕlp.  For some projects, the base unit may rest on the 
foundation soils.  In either case, the available sliding resistance must be reduced by a masonry friction reduction 
factor µb applied to the underlying soil friction coefficient tan ϕ.  This factor accounts for reduced shear resistance 
due to the relatively smooth masonry unit sliding across soil determined from large scale testing.  Actual test data 
specific to soil type and SRW unit should be used in design.  In the absence of specific test data a reasonable value 
for µb may be selected using Table 6-1.

Table 6-1:  Masonry Friction Reduction Factor, μb  [Ref. 25]

Soil Type (USCS) Soil ϕ (Deg) Masonry Friction Reduction Factor 
μb

GW, GP 
GM, SW, SP 
GC, SM, SC

 ML, CL

34 - 40 
30 - 36 
28 - 34 
25 - 32

0.7  
0.65 
0.6 
0.55

Given that the leveling pad at the base of the wall units should be granular material, the masonry friction reduction 
factor generally used for conventional wall analysis will be 0.65 to 0.7.

The factor of safety against sliding parallel to the base of the SRW unit can be calculated as follows:

	 FSsl = Rsc / PaH 	 [Eq. 6-20]

The maximum unreinforced height of wall H is typically adjusted to achieve the targeted minimum factor of safety 
for design (typically FSsl > 1.5, see Table 5-2). 

6.4.4:  Overturning 

The resistance of conventional single depth SRWs to overturning about the toe is evaluated by resisting moments 
taken with respect to the toe of the wall (point O in Figure 6-5): 
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The resisting moment Mr can be calculated as follows:

	 Mr = Ww Xw + PsV  (Wu + Ys tan ω) + PqdV (Wu + Yq tan ω)	 [Eq. 6-21]

where Xw is the resisting moment arm of the wall units and the remaining terms are resisting moments of the vertical 
components. The vertical components, acting at the back of the units, are calculated at a distance of the width of the 
units, Wu, plus the extra distance created by the cant of the wall over the height to reach the center of these forces. 
The term Xw is calculated as the distance from the toe of the wall to the center of gravity of the dry-stacked column 
of SRW units, including the batter of the wall units, that occur at half the wall height.  

	 Xw = Gu + 0.5 H tan(ω) - 0.5 ∆U 	 [Eq. 6-22]

Figure 6-5:  Free Body Diagram of Forces for Conventional Single-Depth SRW
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The driving moment (Mo ) due to the horizontal component of earth forces acting at the back of the SRW face is 
calculated as follows:

	 Mo = PsH Ys + PqH Yq	 [Eq. 6-23]

where

	 Ys = H/3	 [Eq. 6-24]

	 Yq = H/2	 [Eq. 6-25]

The resistance of conventional single depth SRWs to overturning about the toe is evaluated by calculating a factor of 
safety FSot that is the ratio of the sum of the resisting moments to the sum of the driving moments taken with respect 
to the toe of the wall (point O in Figure 6-4), hence: 

	 FSot = Mr / Mo	 [Eq. 6-26]

If the calculated value of FSot is less than the allowable design value (typically 1.5, see Table 5-2) then the maximum 
unreinforced height of the wall should be adjusted lower.

6.4.5:  Bearing Pressure

The potential for tilting of a conventional single depth SRW structure or a bearing capacity failure of the 
foundation soils due to overstressing must be evaluated. For a detailed discussion of bearing capacity analysis 
refer to Section 12.  

For many projects, the site geotechnical engineer may have established an allowable bearing pressure for the 
foundation soils that includes a settlement and bearing capacity criteria.  The calculated bearing pressure for a 
conventional wall (Qac) should be less than the allowable bearing pressure established by the geotechnical engineer.  
If the calculated bearing pressure (Qac) is greater than the allowable pressure provided by the geotechnical engineer 
or the FSbc calculated in Section 12 is less than the minimum  design value (typically FSbc > 2.0, see Table 5-2), 
consultation with the geotechnical engineer is suggested. The bearing pressure exerted by a SRW on the foundation 
soil beneath the leveling pad of a SRW is simply the weight of wall units and load of the vertical components, 
determined over the effective width of the base of the level pad, including the effects of eccentricity, as follows:
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[Eq. 6-27]

where:

	 Bc = Wu + hlp - 2ec	 [Eq. 6-28]

The effective width of SRW for bearing calculations is considered at the base of the leveling pad, which should be 
0.5 ft (152 mm) thick, minimum.  As such, the width of bearing per Meyerhof distribution as shown on Figure 6-5 
is 0.5 ft (152 mm) wider than the width of the units.

and where:
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[Eq. 6-29]

	 ew = Xw - 0.5Ww 	 [Eq. 6-30]



72� Design Manual for Segmental Retaining Walls 3rd Edition 

Further discussion of bearing capacity and bearing factor of safety is provided in Section 12.

Section 6.5:  Internal Stability

To resist lateral earth pressures, a dry-stacked column of SRW units must act as a coherent mass.  The SRW units 
must have sufficient interface shear capacity to transfer all applied external forces to the base of the structure. 

The analysis for internal shear capacity (Figure 6-6) is similar to external base sliding stability calculations described 
in Section 6.4.3, Equation 6-19 and illustrated in Figure 6-1.  Internal sliding resistance, however, is developed by 
shear at the unit-to-unit interface.  The height of the column of dry-stacked SRW units above the sliding surface is 
described by the intermediate height parameter Hs as illustrated in Figure 6-5.

Internal sliding analysis at SRW unit interface layers should proceed from the bottom of the wall to the top because 
lower elevation interfaces are typically more critical.

The portion of internal sliding resistance due to interface shear capacity (Vu ) can be calculated from:

	 Vu =  au + WW tan λu	 [Eq. 6-31]
	
where:

 au	 =	 apparent shear capacity adhesion (lb/ft (kN/m))
 λu	 = 	 apparent peak interface friction angle between SRW units (deg)
WW	 =	 total weight of column of dry-stacked SRW units between sliding surface and top of wall (lb/ft (kN/m)).

The interface shear capacity (Vu ) has units of force/length to be consistent with the convention adopted for all 
stability calculations in this manual. 

The vertical weight of the column of dry-stacked units above each sliding surface for each unit interface, at a 
varying Hs, is calculated as follows:

	 WW = Hs γu Wu 	 [Eq. 6-32]

The interface shear strength parameters au and λu must be established from appropriate full-scale testing as discussed 
in Section 2.1.3.2. 

Figure 6-6:  Sliding—Main Mode of Failure for Internal Stability
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The vertical components at each unit interface for the internal sliding resistance, PsV and PqdV , are calculated in the 
same manner as Equations 6-14 and 6-15, substituting a varying Hs for H.

The horizontal component of the total internal sliding active earth force (PaH) located above the various intermediate 
heights internal sliding surfaces located at intermediate heights (Hs) is calculated by substituting Hs for H in Equations 
6-9, 6-11 and 6-12.

The factor of safety for shear capacity (FSsc) is the ratio of resisting forces to driving forces at each intermediate 
unit height:

	 FSsc = Vu / PaH	 [Eq. 6-32]

The magnitude of FSsc should satisfy minimum recommended design values for internal sliding stability (typically 
1.5, see Table 5-2).  For a given set of soils, backslope angle (β), and surcharge condition, the magnitude of FSsc can 
be adjusted by lowering the wall height H, increasing wall facing batter (ω), or selecting an alternative SRW unit.

Section 6.6:  Example Calculations

An example analysis and design problem for a generic conventional single depth SRW is presented in Appendix A.  
The example serves to illustrate many of the analytical concepts presented in this design manual and to highlight 
important calculation steps.
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SECTION 7
REINFORCED SOIL SEGMENTAL RETAINING WALL DESIGN

Reinforced soil segmental retaining walls (SRW’s) are gravity retaining walls with an expanded width created 
by a geosynthetic reinforced (infill) soil mass located behind a column of dry-stacked (SRW) units (Figure 2-2).  
The dry-stacked column of SRW units and the geosynthetic reinforced (infill) soil zone act together to resist the 
destabilizing forces generated by the retained soil (backfill) and surcharge loadings. 

Geosynthetic reinforcement is used to create a significantly larger gravity mass than is possible with an isolated, 
dry-stacked column of SRW units.  Geosynthetic reinforced soil SRWs can be used to construct higher retaining 
wall structures and support greater surcharge loads than possible with conventional SRW structures.

In this manual, the design of SRWs is based on limit equilibrium methods of analysis together with factors of 
safety applied to the strength of the component materials.  An overview of the components of a reinforced wall and 
guidelines for the selection of wall material properties and interpretation of test data are presented in Section 2. An 
overview of the basic design concepts and assumptions for both conventional and reinforced SRWs is presented in 
Section 5, while this section presents the specific application concepts of Section 5 for reinforced walls.

The design methodology in this manual to be used by the wall design engineer is focused on stability analyses 
related to four general classifications of failure: external stability, internal stability, local facing stability, and internal 
compound stability.  Each is explained in detail in subsequent sections of this chapter, while internal compound 
stability analysis is described in Section 8.  When appropriate, seismic loading must be accounted for in each of 
these failure modes, as described in Section 9. Drainage in and around the wall must also be addressed as explained 
in Section 10. While generally the geotechnical engineer’s responsibility, possible global/slope stability failures 
around and beneath the SRW and an evaluation of bearing capacity and potential settlement of foundation soils 
must also be addressed.

A flow chart of the design methodology recommended in this NCMA manual for soil reinforced SRW structures that 
addresses all potential failure modes is shown in Figure 5-2.  The components and typical geometry of a reinforced 
SRW structure are illustrated in Figure 2-2.

Section 7.1:  Design Assumptions

The design and analysis of reinforced soil SRW’s requires several assumptions and standards for consistent 
evaluation and uniform application of the generic methods presented.  Additionally, several design assumptions 
associated with the analysis have been made to simplify calculations. The design assumptions made in this manual 
are outlined below.

7.1.1:  Coulomb Earth Pressure Theory

Calculation of earth pressure is based on Coulomb’s general equation for the active earth pressure coefficient (Ka) 
as presented in Section 5.4, with specific interpretations of this equation provided in this chapter for external, 
internal and local facing stability analyses. The reader is referred to Section 5 of this manual for an overview of the 
reasons for the use of this theory and for a more thorough overview of the methods and assumptions involved in 
the determination of active earth pressures, forces, and failure planes in reinforced SRW stability design. Derived 
from these general design principles presented in Section 5.4, the specific equations and interpretations for each 
reinforced wall design case are detailed in Sections 7.4, 7.5, and 7.6.
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7.1.2:  Reinforced Zone Width

In this design manual, the base of the reinforced (infill) soil zone (L) for external stability calculations includes the 
width of the dry-stacked column of SRW units.  The lateral extent of the reinforced soil mass shall be taken as a line 
drawn parallel to the face of the stacked SRW units at a distance L (base width of reinforced zone) from the face of 
the structure (Figure 7-2).  

Additionally, the reinforcement length may change from top to bottom of a reinforced soil wall provided that each 
layer has a minimum length greater than L determined from external stability requirements. Selected layers of 
reinforcement may be lengthened at the top of a reinforced SRW to satisfy internal anchorage requirements.  Also, 
some layers might also be lengthened at the bottom of a reinforced SRW to address issues outside the basic wall 
structural design presented in this section, such as foundation or slope stability concerns.  However, any additional 
length of reinforcement greater than L (the minimum width of the reinforced soil zone) is not considered to modify 
the dimensions of the base width of the reinforced zone described above. So for external stability calculations, 
the reinforced zone is always limited to the mass of soil located between parallel front face and back boundaries a 
distance L (base width) apart, regardless of the number of reinforcement layers that may have to be locally extended 
at the top or bottom of a wall for other requirements. 

In some applications, shorter, supplementary layers reinforcement elements may be used at the face of the retaining 
wall to improve facial stability or construction stability (Figure 7-2).  Such shorter, supplementary layers are in 
addition to the primary reinforcement lengths used to satisfy external stability. Such supplementary layers should 
not be considered to shorten the base width of the reinforced zone,  length L. This would include supplementary 
layers between primary layers (Figure 7-2) or added at top wall units, above upper-most primary layer. Typically, the 
supplementary reinforcement is 4 to 5 ft (1.2 to 1.5 m) long and is located at the facing. Although this methodology 
does not explicitly analyze the effects of the additional supplementary reinforcement, experience has demonstrated 
that additional stability at the face can be achieved with these shorter reinforcement layers.

There may also be some situations where a layer (or layers) of reinforcement in discreet, limited locations are 
truncated to less than the base width of the reinforced zone L to accommodate an object within the reinforced 
zone, such as a catch basin or a post foundation. The SRW engineer must carefully evaluate the stability effects of 
such intrusions in the reinforcement zone and determine if they compromise external or internal stability and if a 
remedy is needed. However, an occasional truncated geogrid layer within the reinforced zoned should not always 
and automatically be considered to shorten the base width of the reinforced zone L used in the external stability 
calculations. 

7.1.3:  Loading Assumptions

This section’s methodology makes several assumptions regarding loading and drainage that are more thoroughly 
discussed in Section 5.6 through 5.8. A brief summary of these assumptions are:

●● Surcharges are assumed to be simplified uniform loads starting directly behind the top wall face with 
stabilizing effects of only dead loads, not live loads, considered. Offsets (setbacks) of surcharges are 
generally ignored except in two cases: determining the reductions in the dead load resisting forces due to an 
offset and for determining surcharge loading for facial stability analysis. 

●● No hydrostatic pressure is assumed to be exerted on the wall because it is assumed adequate drainage has 
been provided in and around the wall to evacuate any water before pressure can build up on the wall. Details 
on handling surface water and groundwater to ensure water conditions on site meet this assumption are 
presented in Sections 10, 11, and 12. 

●● In this section, calculations address only static loads and assume no dynamic loading from a seismic event. 
In a seismically active zone, designing for dynamic loads is done by modeling the additional seismic loads 
as pseudo-static loads, as covered in detail in Section 9 Seismic Design of Segmental Retaining Walls. 
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Section 7.2:  Recommended Factors of Safety and Design Criteria

Selection of appropriate factors of safety (FS) should be based on the certainty with which design parameters and 
the consequences of failure are known and standard accepted engineering practice.  Table 5-2 lists the recommended 
minimum safety factors for the external, internal and facial stability failure modes analyzed in this chapter (Ref. 59).  
Generally, the basic static stability factors of safety for the reinforced SRWs wall design presented in this section 
should be a minimum FS = 1.5, except for overturning, which should not be less than FS = 2.0. This FS = 1.5 
minimum does not apply to recommend minimum factors of safety for other analyses beyond this section, such as 
Internal Compound Stabilty (Section 8), Seismic (Section 9) and Global Stability (Section 12). For these analyses 
of reinforced walls, lower minimum factors of safety are recommended. Beyond standard stability factors of safety 
for retaining walls, reinforced walls should also meet minimum geogrid layout criteria. These criteria should govern 
when their requirements for geogrid layout exceed that needed to satisfy the stability calculations presented in this 
section. Table 5-2 provides a summary of the applicable design criteria for soil-reinforced SRWs.

7.2.1:  Geogrid Length Requirements 

Regardless of the results of external stability analyses for sliding and overturning, the minimum base width (L) shall 
not be less than 0.6H (H is the total vertical height of the wall face, including the embedded portion of the wall).  
The purpose of this empirical constraint on L is to prevent the construction of unusually narrow reinforced retaining 
walls.  In addition, it is recommended that the absolute minimum value for L be 4 ft (1.2 m).

7.2.2:  Geogrid Vertical Spacing Requirements

Vertical spacing of geogrid layers should also be limited to a maximum spacing, regardless of the results of the 
stability calculations. It is often cost efficient to maximize vertical spacing between geogrid layers as allowed by 
the stability factors of safety. Even when all internal and facial stability failure modes can be satisfied with greater 
spacing, however, a maximum vertical spacing between reinforcement layers of 24 in. (610 mm) is suggested to 
reduce construction stability issues. Some proprietary systems may be capable of supporting larger spacing between 
reinforcement layers without construction issues, however, the reinforcement spacing should not exceed 32 in. 
(813 mm). This maximum spacing limits construction issues and also ensures a reinforced soil mass behaves as a 
composite material, as intended by this design methodology. Within these limits, the wall designer should choose 
an appropriate maximum reinforcement spacing for the proprietary system used.

For modular blocks that are less than or equal to 10 in. (254 mm) in depth, it is recommended that the maximum 
vertical spacing of the reinforcement layers be no more than twice the depth of the unit.  For example, the maximum 
vertical spacing for a 9 in. (229 mm) deep modular block would be 18 in. (457 mm).  Regardless of the spacing of the 
reinforcement, compaction of the reinforced backfill/retained soil zone must never exceed 8 in. (203 mm) in thickness.

7.2.3:  Geogrid Coverage Requirements

The design methodology presented in this manual only addresses the design of walls with 100% coverage of 
reinforcement in the reinforced zone. For internal and local stability calculations, this manual assumes uniform 
distribution of stresses along the face of the wall.  To satisfy this assumption, the reinforcement layers should not 
have gaps between adjacent strips of reinforcement parallel to the wall face.  Less than 100% coverage should not 
be used with this design procedure.  This is the currently general practice in the design and construction of SRW’s.
	
Section 7.3:  Properties for Reinforced SRW Design

Similar to gravity SRWs, the dimensional and mechanical properties of segmental units must be established prior 
to design. These parameters are:
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Hu	 =	 segmental unit height (ft (m))
Hcu 	 =	 segmental unit cap (coping) height (ft (m)) 
Wu	 =	 segmental unit width (ft (m)) (front of unit to rear)
γu	 =	 weight per unit volume of segmental unit as placed (includes stone fill if applicable) (pcf (kN/m3)
Gu	 =	 center of gravity of segmental unit from front face, using as placed weight (ft (m))
ω	 =	 wall unit inclination due to segmental unit setback (∆U ) per course (deg)
µb	 =	 interface friction coefficient for base segmental unit sliding on bearing soils 
au	 =	 apparent minimum shear capacity between segmental units (lb/ft (kN/m))
λu	 =	 apparent angle of friction between segmental units (deg) 
∆U	 =	 setback per course (in.)
βoffset	 =	 horizontal distance from the back of the top block to the crest of the slope (ft (m))
qloffset	 =	 horizontal distance from the back of the top block to the beginning of a uniform live load surcharge 

(ft (m))
qdoffset	 =	 horizontal distance from the back of the top block to the beginning of a uniform dead load surcharge 

(ft (m))
Hext	 =	 height of back of reinforced wall over which the active earth pressure for external stability is 

calculated (ft (m))

Additionally, the properties of SRW units and the attachment between the geosynthetic reinforcement and SRW 
units are required.  The properties listed below should be determined by laboratory testing of the SRW unit and 
geosynthetic reinforcement to be utilized according to ASTM D 6638 Standard Test Method for Determining 
Connection Strength Between Geosynthetic Reinforcement and Segmental Concrete Units and ASTM D 6916  
Standard Test Method for Determining the Shear Strength Between Segmental Concrete Units.

acs	 =	 apparent minimum peak connection strength between geosynthetic reinforcement and SRW unit (lb/ ft 
(kN/m))

λcs	 =	 apparent angle of friction for peak connection of geosynthetic reinforcement to SRW unit (deg)	
Tultconn	 =	 ultimate connection strength between geosynthetic reinforcement and SRW unit (lb/ft (kN/m))
au	 =	 apparent minimum shear strength between SRW units (lb/ft (kN/m))
λu	 =	 apparent angle of friction for SRW unit interface (deg)	

The performance properties for each type (t) of geosynthetic reinforcement utilized in a design should be determined 
through the appropriate laboratory and field testing as described in Section 2.5.

LTDS	 =	 Long-Term Design Strength of the geosynthetic as calculated by Equation 2-3 (lb/ft (kN/m)).
Ci	 =	 Coefficient of interaction for pullout of the geosynthetic from the reinforced soils to be used as 

calculated by Equation 2-4.
Cds	 =	 Coefficient of direct sliding between the geosynthetic and reinforced soils to be used as calculated by 

Equation 2-5.

Section 7.4:  External Stability of Reinforced SRWs

External stability analyses examine the stability of the mass formed by the facing units and reinforced soil zone 
with respect to active earth forces generated by self-weight of the retained soils and distributed surcharge pressures 
beyond the reinforced zone (Figure 7-1).  These analyses determine the minimum length (L) of geosynthetic 
reinforcement by checking:

●● 	Base Sliding: Outward movement of the SRW along the base of the reinforced soil mass due to insufficient 
shear resistance in the soil.

●● 	Overturning:  Rotation of the reinforced soil mass about the toe of the wall. 
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Figure 7-1:  External Earth Pressures
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External stability calculations for reinforced SRW structures consider the reinforced zone of infill soil and the dry-
stacked column of SRW units to act as a monolithic gravity mass. 

The distribution of earth pressures acting at the back of the reinforced zone due to the retained soil self-weight and 
surcharge loadings are shown in Figure 7-2.  

The active earth pressure coefficient (Kaext ) is calculated using Equation 7-1 and is a function of the peak friction 
angle of the retained soil (ϕr ) the backslope angle for external analysis (βext ), facing inclination angle (ω), and the 
external interface friction angle (δe ).  The lateral earth pressure is assumed to be applied perpendicular to the plane 
inclined at ω defining the back of the reinforced soil mass as altered by the interface friction angle (δe ) (Figure 7-2).  
Since δe is assumed to mobilize full soil shearing resistance along the back of the reinforced zone equal to the lower 
peak friction angle of the retained or reinforced (infill) soil, a downward inclined lateral pressure distribution results 
for most wall inclinations (i.e., δe must be greater than ω).
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[Eq. 7-1]

where:

	 δe = lesser of φi  or φr	 [Eq. 7-2]	

 βext  = the slope, or equivalent slope, behind back of reinforced zone used for external earth pressure calculations 
(see Equations 7-9 A, B, or C)

7.4.1:  Wall Geometry Dimensions for External Analyses

The back of the reinforced soil zone is taken as a surface inclined at ω to the vertical (i.e., parallel to the inclined wall 
face) and located a distance L from the front face.  For a complete definition of L, see Section 7.1.2.  As summarized here, 
L  for external analysis is the base width of the reinforced soil mass.  Even if there are some longer layers at the bottom or 
top of the wall, the length of the shorter primary layers of reinforcement within the reinforced zone are used to determine 
L.  However, the base width of the reinforced zone L used for external stability calculations should not be reduced to 
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the length of supplementary layers.  Also, truncation of a primary geogrid layer in a limited area need not  always and 
automatically be deemed to reduce the base width of reinforced zone L,  see Section 7.1.2 for further discussion.

Dimensions used for external analysis are determined for various top-of-wall (geometric) conditions. These include 
the height at the back of the reinforced mass over which this earth pressure is exerted (Hext), the slope angle behind 
the reinforced mass used for external earth pressure calculations (βext )  and the horizontal width of the reinforced 
mass (Lβ ), at the intersection of the back of reinforcement with the top of wall grade.  These variables are a function 
of the geometry of the grades at top of the wall and behind the reinforced mass.

Top-of-wall geometry will influence the calculation of these values.  Hext ,  βext , and Lβ  are calculated by locating the 
crest of the slope above the top of the reinforced zone; including the vertical height (above the reinforced zone) (h) 

Figure 7-2:  External Stability—Geometry and Forcess (Slope Case B Shown)
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Figure 7-3:  Broken Back—Top of Wall Forces and Geometry–CASE A

of a wall backslope that is continuous to the back of the reinforced zone, the height of the crest of a broken slope 
(hs ), and the height of a continuous slope extended horizontally to the maximum external influence zone (hmax) (see 
Figures 7-3, 7-4, 7-5, respectively). The horizontal distance to the crest of a broken slope from the back of the top 
unit (βoffset) is used to determine hs.

Behind the base width of reinforced zone length (L) the extra horizontal distance that the projection of the back of 
the reinforced mass makes when extended to a top slope is called L′′  for a slope that is continuous to this distance 
or called sL′′  for a broken slope that crests before reaching this distance.  

These geometric values are calculated as follows: 

	 uL L W′ = - 	 [Eq. 7-3]	

	

tan ( ) tan ( )
1- tan ( ) tan ( )
L     L  = 

   
′ b ω′′

b ω 	
[Eq. 7-4]

Figure 7-4:  Broken Back—Top of Wall Forces and Geometry–CASE B
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Figure 7-5:  Broken Back—Top of Wall Forces and Geometry–CASE C
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	 ( ) tanh L L′ ′′= + b 	 [Eq. 7-5]
			 

	 ( )max tan ( )h L L H h′ ′′= b + + +   	 [Eq. 7-6]

	 tans offseth = b b 	 [Eq. 7-7]

	 tans sL = h′′ ω 	 [Eq. 7-8]

The maximum influence zone for external analysis is defined as the horizontal distance of H + h behind the back of 
reinforced zone. This marks the estimated distance after which a break in a slope will no longer significantly reduce 
the soil pressure on a wall. It also marks the distance to which an equivalent slope is drawn, to best model the effect 
of a broken slope on the earth pressures. 

From these values, the dimensions of Hext , βext and Lβ are calculated in different manners for each top of wall/slope case:

For Slope—Case A:	 hs < h (broken slope crests above reinforced mass)

	 0extb = 

	 [Eq. 7-9A]

	 Hext = H + hs	 [Eq. 7-10 A]

	 ' sL L Lb ′′= + 	 [Eq. 7-11 A]

For Slope—Case B:  h < hs < hmax (slope crests behind reinforced mass but within influence zone)

	 ( )
1tan s

ext
h h
H h

-  -
b =  

+   	
[Eq. 7-9B]

	 Hext = H + h	 [Eq. 7-10B]
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	 L L Lb ′ ′′= + 	 [Eq. 7-11B]

For Slope—Case C:  hs > hmax (infinite slope or broken slope that crests beyond influence zone)

	 extb = b 	 [Eq. 7-9C]

	 Hext = H + h	 [Eq. 7-10C]

	 L L Lb ′ ′′= + 	 [Eq. 7-11C]

For Level Grade—Case D:

For a horizontal backslope, β = 0, the values h and hs and L′′  and sL′′  in Equations 7-4, 7-5, 7-7 and 7-8 all equal 0 
and any of the slope case equations (Equations 7-9, 7-10 and 7-11 apply), yielding the following results:

	 βext = β	 [Eq. 7-9D]

	 Hext = H	 [Eq. 7-10D]
				 
	 Lβ = L′  	 [Eq. 7-11D]		
			 

7.4.1.1:  External Earth Forces and Locations 

The distribution of earth pressures acting at the back of the reinforced zone due to the retained soil self-weight and 
surcharge loadings are shown in Figure 7-2.  

The earth force Ps due to the retained soil self-weight is calculated as follows:

	
20.5 ( )s aext r extP K H= γ 	 [Eq. 7-12]

The earth force due to a uniformly distributed live load surcharge q1 and dead load surcharge qd acting over the 
retained soil surface is:

	 ( )l ( )q d aext extP q q K H= + 	 [Eq. 7-13]

Horizontal Components

The horizontal component of Ps is calculated as follows:
 
	 ( )20.5 ( ) cossH aext r ext eP K H= γ δ - ω 	 [Eq. 7-14]

The horizontal component of Pq when acting as a driving force in stability calculation is calculated as follows:

	 ( ) ( )cosqdH d aext ext eP q K H= δ - ω 	 [Eq. 7-15]

	 ( ) ( )cosqlH l aext ext eP q K H= δ - ω 	 [Eq. 7-16]

Therefore, the total horizontal active earth force Pa acting at the back of the reinforced soil zone is:

	 aH sH qdH qlHP P P P= + + 	 [Eq. 7-17]
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The horizontal components of the forces PsH and PqH are assumed to act at distances of Ys and Yq, respectively above 
the heel of the lowermost SRW unit respectively.  These distances are computed as:
	

	 3
ext

s
HY =

	
[Eq. 7-18]

	 2
ext

q
HY =

	
[Eq. 7-19]

	 	 	
Vertical Components

As discussed in Section 5.4.3, the vertical components of earth force due to retained soil PsV are considered in the 
analysis as well as the vertical component of earth force due to surcharge PqV

The vertical component of Ps is calculated as follows:
 
	 ( )20.5 ( ) sinsV aext r ext eP K H= γ δ - ω 	 [Eq. 7-20]

The vertical component of Pq is calculated as follows:

	 ( ) ( )( )sinqdV d aext ext eP q K H= δ - ω 	 [Eq. 7-21]

	 ( ) ( )l ( )sinqlV aext ext eP q K H= δ - ω 	 [Eq. 7-22]

Therefore, the total vertical active earth force PaV  acting at the back of the reinforced soil zone is:

	 aV sV qdV qlVP P P P= + + 	 [Eq. 7-23]		
			 
Because of the transient nature of the live load surcharge, ql , it is not considered to contribute to the stabilizing 
vertical forces that occur in resisting force equations. The vertical components of the dead and live load surcharges, 
PqdV and PqlV, are accounted for separately, to allow this distinction. 
 
The vertical components of the forces PsV and PqV are assumed to act at distances of Xs and Xq , respectively, from the 
toe of the lowermost SRW unit respectively.  These distances are computed as:
	

	
( ) tan

3
ext

s
HX L= + ω

	
[Eq. 7-24]

	
( ) tan

2
ext

q
HX L= + ω

	
[Eq. 7-25]

	

7.4.1.2:  Offset Dead Surcharge Loads (qdoffset ) and Geometry for Resisting Equations

If the horizontal offset of a dead surcharge load:  qdoffset is located: a) beyond the internal failure plane dint or b) 
beyond the reinforced mass (Lβ ), the dead load is considered not to contribute to stabilizing the reinforced wall mass 
against overturning and sliding. In external stability calculations, dead surcharge loads that are offset beyond this 
distance are treated in the same manner as a live load and are not added to resisting force equations.

The determination of the horizontal influence distance dint for a dead load depends on top of wall geometry and 
the angle of internal failure plane αi that is defined later in Section 7.5.1.3:  Internal Failure Plane. The horizontal 
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Figure 7-6:  Influence of Dead Surcharge Loads
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distance from the back of the wall units to the intersection of the internal failure plane with top grade can be 
determined for each top-of-wall case.  First, the height above the reinforced mass (hint ) at the intersection of a 
continuous slope with the internal failure plane is determined:

	

( )
( )
1 tan tan

tan
tan tan

i
int

i

H
h

− ω α
= β

α − β 	
[Eq. 7-26]

This horizontal influence distance is calculated differently for each top-of-wall/slope condition:

For Slope Case A hs < hint (broken slope crests below height of intersection):
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H hd H+
= − ω

α 	
[Eq. 7-27A]

For Slope Case B hs > hint (infinite slope, or broken slope that crests at or above intersection):

	
tan

tan
int

int
i

H hd H+
= − ω

α 	
[Eq. 7-27B]

For Level Grade

For β = 0 and hint or hs = 0, either Equations 7-27A or B can be used to determine dint.

Influence Distance for Offset Dead Loads

In the case where the horizontal offset of the dead load qdoffset (Figure 7-6) is greater than the influence distance (dint ) 
or the width of the reinforced mass (Lβ ) then the dead load is removed for the resisting forces determined in Sections 
7.4.2, 7.4.3, 7.5.4 and 7.5.5:

	

or ,

and are removed from the resisting forces (Equations 7 32, 41, 63, and 75)
doffset int doffset

d qdV

q d q L
q P

β> >

− 	
[Eq. 7-28]

In the case where the horizontal offset of the dead load qdoffset (Figure 7-6) is less than the influence distance (dint ) and 
the reinforced mass (Lβ ) then the dead load is conservatively applied in the resisting forces over a reduced length 
Lβq at the bottom of the soil mass, in Sections 7.4.2, 7.4.3, and 7.5.5:

	 Lβq = Lβ - (H + h) tan ω - qdoffset (Lβq replaces Lβ in Equations 7-32, 34, 37, 42 and 75)	 [Eq. 7-29]

Increasing one reinforcement length will not increase the dead loads accounted for in the design. To increase the 
dead load included the minimum geogrid length (L) in the wall section has to be increased.	
	

7.4.1.3:  Soil Weights

The weights of the soil and the dry-stacked column of SRW facing units (Wri ) and the weight of the soil above the top of 
wall (when there is a backslope) (Wrβ ) act on the base of the reinforced soil mass, also contribute to the resisting moments. 
To simplify calculation of Wri , the unit weight of the reinforced (infill) soil and facing units are assumed to be equal (i.e  γu 
= γi).  Provided that there is less than a 25% difference between γi and γu , this assumption has no significant effect on design 
since the relative contribution of the column of facing units to the mass of the reinforced (infill) soil zone is small.  
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Hence, the weight of the reinforced mass (Wri ) including facing units can be calculated as follows:

	 ri iW L H= γ 	 [Eq. 7-30]

If a backslope is present, the weight of soil in the slope above the reinforced zone (Wrβ ) is calculated differently 
depending on the geometry of the slope:

For Slope Case A (Figure 7-3):  hs < h	 (broken slope crests above reinforced mass)

	 1 2 3r r r rW W W Wβ β β β= + + 	 [Eq. 7-31A]

Where:
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[Eq. 7-31A1]
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[Eq. 7-31A3]

For Slope Case B (Figure 7-4):  hs > h (broken slope that crests behind reinforced zone or infinite slope)
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[Eq. 7-31B]

7.4.2:  Base Sliding

The lateral stability of the reinforced zone is maintained by base sliding resistance (Rs) as shown in Figure 7-7.  The 
magnitude of the base sliding resistance (Rs) is assumed to be controlled by the shear strength of the weakest soil at 
the base of the wall.  Therefore the least resistance Rs, defined by Equations 7-32A through 7-32C is utilized in base 
sliding stability calculations as follows:

If reinforced (infill) soil controls:

	 ( ( )) tanS ds d ri r sV qdV iR C q L W W P Pβ β= + + + + φ 	 [Eq. 7-32A]

If gravel fill controls:

	 ( ( )) tanS ds d ri r sV qdV dR C q L W W P Pβ β= + + + + φ 	 [Eq. 7-32B]

If foundation soil controls:

	 [ ( ( )) tan ]S ds f d ri r sV qdV fR C c L q L W W P Pβ β= + + + + + φ 	
[Eq. 7-32C]

If the dead load surcharge is offset, the term Lβ in the above equations may need to be replaced by the term Lβq 
(Equation 7-29) or qd may need to be removed entirely (Equation 7-28), depending on top-of-wall geometry.

The coefficient of direct sliding Cds should be assigned a value of 1.0 in Equations 7-32A through 7-32C above, unless 
a layer of geosynthetic reinforcement or geotextile filter is placed at the base of the first course of SRW units.  In fact, 
SRWall Version 4.0 does not allow the value of Cds to be other than 1.0 for external sliding.  Placement of geosynthetics 
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at the bearing pad elevation may create a reduced sliding resistance.  Note that only the dead load portion of the 
distributed surcharge pressure is considered in these expressions (Equations 7-32A through 7-32C) for base resistance 
(see Section 5.6.3.1).

The total driving horizontal force PaH that is exerted against the base resistance is defined earlier in Section 7.4.1.1, 
Equation 7-17.

The factor of safety against base sliding (FSs1)is based on the smallest value of Rs calculated from Equations 7-32A-
C determined as follows:

	

s
sl

aH

RFS
P

=
	

[Eq. 7-33]

If the calculated factor of safety against sliding (FSs1) is less than the design value (typically 1.5, see Table 5-2), then 
the trial base reinforcement length (L) should be increased and the analysis repeated.  For many routine structures, 
the length of the reinforced zone, and hence the minimum length of the geosynthetic reinforcement layers, will be 
controlled by this external base sliding failure mechanism.

7.4.3:  Overturning

Conventional engineering design practice for reinforced soil walls is to ensure the reinforced soil zone is stable with 
respect to overturning about the toe of the wall (point O in Figure 7-7).  The flexibility of reinforced SRWs makes 
it unlikely that the gravity mass would actually overturn in practice; however, an adequate factor of safety against 
overturning will limit excessive outward tilting and distortion of the SRW face [Ref. 19].

7.4.3.1:  Resisting Moments

The moments resisting overturning are due to the self-weight of the reinforced zone and any dead load surcharge 
(qd ) acting over the reinforced zone.

The sum of the resisting moments Mr is calculated as follows:

For Slope Case A:  hs < h (broken slope crests above reinforced mass)

	

1 1 2 2 3 3[ ]r ri ri r r r r r r d q

qdV q sV s

M W X W X W X W X q L X

P X P X

β β β β β β β β = + + + + 
  + +    	

[Eq.7-34A]

For Slope Case B:  hs > h (broken slope that crests behind reinforced zone or infinite slope)

	 [ ] [ ] [ ]r ri ri r r d q qdV q sV sM W X W X q L X P X P Xβ β β β= + + + + 	
[Eq. 7-34B]

For Level Grade When β = 0 and Wrβ  = 0:

Equation 7-34B can be used to determine Mr for level top grade.

The vertical components PsV and PqdV  that provide additional resisting forces, as shown in Figure 7-7, are calculated 
in Equations 7-20 and 7-21 and the soil weights Wri and  Wrβ  are calculated in Equations 7-30 and 7-31A.
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As discussed in Section 7.4.1.2, if the dead surcharge load is offset, the term Lβ in the above equations may need to 
be replaced by the term Lβq (Equation 7-29) or qd may need to be removed entirely (Equation 7-28), depending on 
top-of-wall geometry.

Moment Arms

The moment arms (Xq and Xs ) shown in Figure 7-7 and used in Equations 7-34 A and B are the arms for the vertical 
components of resisting earth forces (PqdV and PsV ).  These moment arms (Xq and Xs ) are calculated by Equations 
7-24 and 7-25 shown in Section 7.4.1.1 External Earth Forces and Locations. 

The other moment arms (the other X terms in Equations 7-34 A and B), which are for the resisting force of the soil 
weights and surcharges, are calculated as follows:

Resisting moment arm for reinforced fill zone:

	
( )tan

0.5
2ri U

L H
X

+ ω
= − ∆

	
[Eq. 7-35]

Figure 7-7:  Free Body Diagram—(Slope Case B Shown)
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Resisting moment arms for the soil in the top slope:

For Slope Case A:  hs < h  (broken slope crests above reinforced mass)

	
2

1 3tanr u offsetX H Wb = ω + + b 	
[Eq. 7-36A1]

	
2 tan

2
offset

r u offset

L
X H Wb

′ - b
= ω + + b +

	
[Eq. 7-36 A2]

	
3

tantan
3

s
r u

hX H W Lb

ω′= ω + + +
	

[Eq. 7-36A3]

For Slope Case B:  hs > h  (broken slope that crests behind reinforced zone or infinite slope)

	
2
3tanr uX H W Lb ′= ω + + 	 [Eq. 7-36B]

Resisting moment arm for surcharge on a slope:

	
[ ]( ) tan

2q ext

L
X L H b

b = + ω -
	

[Eq. 7-37]

If the dead surcharge load is offset, the term Lβ in the above equation may need to be replaced by the term Lβq 
(Equation 7-29), if qd has not been removed entirely (Equation 7-28).
	

7.4.3.2:  Overturning (Driving) Moments 

The sum of the driving moments (Mo) due to the horizontal earth forces acting at the back of the reinforced soil zone 
are calculated as follows:

	 ( )( + )O sH s q qdH qlHM P Y Y P P= + 	 [Eq. 7-38]

The horizontal driving forces (PsH  and PqH ) and their moment arms (Ys and Yq ) are calculated in Section 7.4.1.1 in 
Equations 7-14, 7-15, 7-16, 7-18 and 7-19 as shown in Figure 7-7.

7.4.3.3:  Overturning Factor of Safety 

The factor of safety with respect to overturning (FSot ) is calculated as follows:

	

r
ot

o

MFS
M

=
	

[Eq. 7-39]
		

			 
The magnitude of  FSot  is typically controlled in any design section by adjusting the length of the base reinforcement 
length (L).  A typical minimum recommended value for FSot is 2.0 (see Table 5-2) 

7.4.4:  Bearing Pressures for Geotechnical Foundation Analysis

While bearing capacity and foundation settlement is generally evaluated by the project geotechnical engineer, 
the wall design engineer should determine the driving loads, in the form of bearing pressures, on the foundation 
materials to compare to the capacity values determined by the geotechnical engineer. Conventional bearing 
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capacity analyses are carried out with respect to the base width (L) of the reinforced (infill) soil mass, as 
explained in Section 12. The reinforced (infill) soil mass is assumed to act as a continuous strip footing and must 
have sufficient width (L) to prevent overstressing of the foundation soils that may lead to shear failure of the 
foundation soils or excessive settlement.

In this design manual, the conventional Meyerhof stress distribution approach is adopted.  It is utilized to ensure 
a conservative estimate of applied bearing stress.  The effect of eccentricity of the resultant bearing force (net 
foundation load) is to restrict compressive bearing pressures to an equivalent bearing area (B) calculated as:

	 2B L e= - 	 [Eq. 7-40]

Here e is the eccentricity of the foundation load Rb (Figure 7-7).  The quantity (e) can be calculated by summing 
moments about the center of the base length (L/2) with counter-clockwise being positive:

	 2 ( )
r o

ri r d sV qdV

M MLe
W W q L P Pb b

-
= -

+ + + + 	
[Eq. 7-41]

	
If the dead surcharge load is offset, the term Lβ in the above equation may need to be replaced by the Lβq term   
(Equation 7-28), if qd has not been removed entirely (Equation 7-27).	

This design manual utilizes base eccentricity (e) solely to calculate an equivalent footing width B to ensure a 
conservative calculation of applied bearing pressure.  Throughout this manual, the vertical stress at any point used to 
calculate lateral stress will be the conventional overburden stress (σv ) (Equation 5-2), appropriate for Coulomb earth 
pressure theory.  This assumption of a uniform vertical stress distribution is substantiated by data from instrumented 
test walls [Refs. 31, 33, 39, 40, 42, and 43].

The applied bearing pressure (Qa) acting over the equivalent bearing width (B) is:

	

[ ( ) ]ri r l d aV
a

W W q q L P
Q

B
b b+ + + +

=
	

[Eq.  7-42]

For many projects, the site geotechnical engineer may have established an allowable bearing pressure for the 
foundation soils, which include a settlement and bearing capacity criteria.  The calculated Qa should be less than 
the allowable bearing pressure established by the geotechnical engineer; if not, consultation with the geotechnical 
engineer is suggested.  If the calculated bearing pressure (Qa) is greater than the allowable pressure provided by 
the geotechnical engineer or the FSbc calculated in Section 12 is less than the minimum design value (typically 
FSbc = 2.0, see Table 5-2), consultation with the geotechnical engineer is suggested. While bearing pressure and 
some settlement concerns might be reduced slightly by increasing L, bearing pressure will never be less than the self-
weight of the reinforced zone soil fill. For more strategies to handle difficult foundation conditions and discussion 
of geotechnical engineering foundation analysis below a SRW, see Section 12. 

Section 7.5:  Internal Stability of Reinforced SRWs

Internal stability analyses examine the effectiveness of the geosynthetic reinforcement in holding the reinforced 
soil mass together so the geosynthetic layers and soil function as a monolithic block. The internal stability analyses 
determine the minimum strength, number, and vertical spacing of reinforcement layers by examining:

●● Tensile Overstress:  When the applied tensile stress in the geosynthetic reinforcement exceeds an established, 
product-specific, allowable working stress level. 
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●● Pullout:  Excessive movement of the geosynthetic through the reinforced soil zone, generally without 
rupture of the reinforcement.  

●● Internal Sliding:  Geosynthetic reinforcement layers may create preferred planes of sliding at elevations 
along the height of the wall.

Internal stability calculations are carried out to evaluate the integrity of the reinforced zone as a monolithic composite 
comprised of geosynthetic reinforcement, soil and SRW units.  The internal forces to be resisted by horizontal 
reinforcement layers are calculated using Coulomb lateral earth pressure theory as discussed in Section 5.4.  Tensile 
overstress, pullout and internal sliding failure modes as shown in Figure 7-8 must be examined.

These assumptions are the essence of the “tied-back wedge method” of analysis and are a common element of 
most limit equilibrium based methods of internal stability analysis for geosynthetic reinforced soil walls [Refs. 
7, 19 and 36].  The tied-back wedge analysis refers to the lateral stability provided by the horizontal layers of 
geosynthetic reinforcement to anchor the wedge-shaped zone of failed soil identified in Figure 7-12.  All geosynthetic 
reinforcement layers must have sufficient length to develop adequate anchorage capacity beyond the internal plane 
of failure to prevent excessive deformation (pullout) of the reinforcement through the soil. 

The tied-back wedge method for internal stability is used to determine the number, strength, and vertical spacing 
of geosynthetic reinforcement layers in the reinforced zone. The length of the reinforced (infill) soil mass (L) 
determined from external stability calculations normally controls the length of reinforcement layers. In some 
instances, however, the length of the uppermost geosynthetic layer(s) might have to be extended to provide adequate 
anchorage (pullout capacity).  The local extension of one or more layers near the top of the wall does not affect the 
boundaries of the reinforced soil zone for external stability calculations (Section 7.1.2). 
	
Incorporation of geosynthetic reinforcement into the reinforced zone may create a preferred path for outward sliding.  
Internal sliding analyses must be carried out to check that this failure mechanism is prevented. The potential for 
direct sliding increases for geosynthetics (especially geotextiles) that have a lower interface friction angle with the 
surrounding soil than the peak friction angle of the soil itself (i.e., Cds < 1.0).

The location of the reinforcement layers is typically determined by a trial and error approach while recognizing 
that lateral earth pressures increase linearly with depth below the crest of the wall.  Consequently, the vertical 
spacing between reinforcement layers can be expected to decrease with depth in taller structures. Alternatively, 
for uniformly vertical spacing of geogrids, need for higher-strength geogrids can be expected with depth.  The 
distribution of reinforcement layers will also be influenced by the strength of geosynthetic connections to facing 
units and the stability of the unreinforced portion of units at the top of the wall (crest toppling).

Figure 7-8:  Main Modes of Failure for Internal Stability

Horizontal Movement Horizontal Movement

Movement between 
courses at 
reinforcement level

Pullout Tensile Overstress Internal Sliding
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7.5.1:  Internal Earth Pressures and Failure Plane

For internal stability calculations, the lateral earth pressure due to reinforced (infill) soil self-weight and imposed surcharge 
loadings (qd and ql) is assumed to be linearly distributed with depth, and is derived from the internal active earth pressures 
coefficient Kaint acting at an angle δi to the horizontal direction at the back of the SRW units (Figure 7-11). The vertical 
stress σv (Equation 5-2) utilized to calculate lateral Kaint is the overburden pressure.  The active earth pressure coefficient 
Kaint for internal stability analyses is calculated using Equation 7-43 together with the reinforced (infill) soil peak friction 
angle (ϕi ), interface friction angle (δi ), and facing inclination angle (ω).  The earth pressures used to determine internal 
stresses on geosynthetic layers are assumed to act over the height of the wall face (H).  The earth pressure is assumed to 
act perpendicular to the wall inclination (ω) as altered by the internal interface frictional angle (δi ).  To ensure that the 
friction mobilized along the back of the concrete facing units results in a downward inclined lateral pressure distribution, 
the wall inclination (ω) must be less than δi .  Under these conditions, the influence of the vertical component of internal 
earth pressures on stability analyses is conservatively ignored for internal analysis of overstress and pullout (Sections 
7.5.1.2, 7.5.3, and 7.5.4) to simplify calculations.
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ω ω - δ + ω - δ ω + b  	

[Eq.  7-43]

Where: 
	 δi = 2/3 φi	 [Eq.  7-44]	

βint   = top of wall slope, or equivalent slope, used for internal earth pressure (see Equations 7- 46A or B)
		

7.5.1.1:  Backslope Geometry for Internal Earth Pressures

The maximum influence zone for internal analysis is defined as the horizontal distance of 2H from top of wall face (at 
back of top unit). This marks the estimated distance after which a crest in a slope will no longer significantly reduce 
the internal soil pressure on the reinforced wall. It also marks the distance to which an equivalent slope is drawn, to 

Figure 7-9: Broken Back Geometry—CASE A
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estimate the effect of a broken slope on the internal pressures (see Figures 7-9 and 7-10).  The maximum height of 
slope influence for internal analysis (hmaxint ) and the slope used for internal analysis (βint ) are calculated as follows:

	 2 tanmaxinth H= b 	 [Eq.  7-45]

For Slope Case A:  hs < hmaxint  (broken slope crests within 2H)	

	
arctan

2
s

int
h
H

b =
	

[Eq.  7- 46A]

For Slope Case B:  hs > hmaxint (an infinite slope or broken slope that crests beyond 2H)

	 intb = b 	 [Eq.  7- 46B]

7.5.1.2:  Overall Internal Forces

The calculation of horizontal forces due to soil self-weight surcharge loadings is similar to external stability quantities 
using Equations 7-12 to 7-14.  The main difference is that lateral earth forces are taken with respect to the height of 
the wall (H) rather than Hext and only horizontal components of the loads are considered, as shown on Figure 7-11. 

Hence, the internal earth force due to self-weight of reinforced (infill) soil acting over the whole height of the wall is:

	 ( )2
int0.5 ( ) cossH a i iP K H′ = γ δ - ω 	 [Eq. 7-47]

The total internal earth force due to a uniformly distributed live load surcharge (ql ) and dead load surcharge (qd ) 
acting over the whole height of the wall is:

	 ( ) ( )cosqH l d aint iP q q K H′ = + δ - ω 	
[Eq. 7-48]

Figure 7-10: Broken Back Geometry—CASE B
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Figure 7-11: Internal Stability—Forces and Geometry
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The total horizontal active earth force ( aHP′ ) acting at the back of the SRW unit is: 

	
aH sH qHP P P′ ′ ′= + 	 [Eq. 7-49]

7.5.1.3:  Internal Failure Plane

The location of peak internal tensile load and anchorage zone within the reinforced (infill) soil mass is referenced to 
a failure plane that is assumed to propagate up into the reinforced (infill) soil mass from the heel of the lowermost 
SRW unit at an angle αi from the horizontal (Figure 7-6) determined as follows:  

[Eq. 7-50]

	

tan( ) [tan( ) (tan( ) cot( )) (1 tan( ) cot( ))]
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7.5.2:   Load on Individual Reinforcement Layers

The methodology uses the contributory area approach in which each layer of reinforcement is analyzed discreetly.  
The tensile load on any given reinforcement is calculated and compared to the allowable long-term strength of that 
particular reinforcement.  First, an initial layout of the reinforcement vertical spacing must be established as a basis 
of calculating contributory areas for each geogrid layer.

7.5.2.1:  Determination of Minimum Number of Geogrid Layers

Estimating the minimum number of reinforcement layers (Nmin ) required to satisfy horizontal equilibrium at the 
back of the dry-stacked column of SRW units is the initial design step.  The value calculated using the following 
expressions should be rounded up to the nearest whole number. 

For designs using a single reinforcement type:

	

1.5aH
min

PN
LTDS
′ ×

=
	

[Eq. 7-51]

where:
	 (1) 1 (2) 2 ( )...aH n nP FS LTDS N LTDS N LTDS N′ × = + + + 	 [Eq. 7-52]
	
For multiple reinforcement types:
	
	 1 2 ...min tN N N N= + + + 	 [Eq. 7-53]

The quantity aHP′ is the active earth force acting over the height of the wall (H) where the minimum factor of safety 
for overstress is typically 1.5 . The quantity LTDS(t) is the  long-term design strength of reinforcement type t and Nt 
the total number of layers for that type t.  Equation 7-52 allows any combination of design strengths (types t), but 
the common strategy is to use a single reinforcement type to facilitate construction.  Alternatively, reinforcement 
materials that decrease in design strengths with increasing elevation above the bearing pad can be used to help keep 
vertical reinforcement layer spacings constant.  Nmin should always be rounded up to the nearest whole number of 
layers.  Throughout this manual the subscript n indicates the reinforcement layer under consideration and N the total 
number of reinforcement layers to be analyzed. 

The convention in this manual is to use E(n) to denote elevations in a vertical plane.  The datum is the elevation of 
the heel of the lowermost SRW unit (i.e., top of leveling pad elevation); see Figure 7-12.  The effect of battered wall 
and actual joint location is ignored to simplify analysis (the effect can be shown to be negligible).

The vertical location (elevation E(n) ) and number of reinforcement layers should be selected based on Nmin, SRW 
unit height (Hu) and recognizing that earth pressures will increase linearly with depth.  If a wall project comprises 
an alignment with variable footing grade, an effort is often made to preserve reinforcement elevations across wall 
sections to facilitate construction. If one or more reinforcement types are used, it is recommended that the stronger 
materials be placed at the lower elevations.  The reinforcement layers, n, and types, t, should increase numerically 
from the base of the wall up.  Vertical spacing should also not exceed the maximum spacing requirements discussed 
in Section 7.2.2
		   

7.5.2.2:  Contributory Area 

The contributory area (Ac(n)) for any reinforcement elevation is defined as the midpoint between adjacent reinforcement 
elevations or the between the top and bottom of the wall.  Hence, for the lowermost layer:
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Figure 7-12:  Internal Dimensions, Forces and Definitions

A = contributory area to determine force in reinforcement, F
D = depth to midpoint of contributory area, A
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E = elevation of layer n above reference datum
L = anchorage length of layer n
AC = anchorage capacity of layer n
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q = live load surcharge
σ = horizontal pressure
ω = wall inclination
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	 (1) (2) (1)( ) / 2cA E E= + 	 [Eq. 7-54]

For any intermediate layer n:

	

( 1) ( ) ( ) ( 1)
( ) 2 2

n n n n
c n

E E E E
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[Eq. 7-55]
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which simplifies to:

	

( 1) ( 1)
( ) 2

n n
c n

E E
A + -- 

=  
  	

[Eq. 7-56]

For the topmost layer N:

	 ( ) ( ) ( 1)[( ) / 2]c N N NA H E E -= - - 	 [Eq. 7-57]

7.5.2.3:  Midpoint of Contributory Area

To calculate the force in a geosynthetic reinforcement layer (Fg(n)), the depth Dn below the crest of the wall to 
the midpoint of the contributory area (Ac(n)) must be determined for that layer n to calculate the average pressure.  
Generally, for non-uniform vertical spacing, the midpoint of the contributory area will be different from the 
placement elevation E(n).  The Dn to the midpoint of a contributory area (Ac(n)) can be calculated as follows for the 
lowermost layer.
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D H

 
= -  

  	
[Eq. 7-58]

For any intermediate layer n:
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[Eq. 7-59]

For the uppermost layer N:

	
( )

2
c N

N

A
D =

	
[Eq. 7-60]

7.5.2.4:  Applied Tensile Load of Reinforcement Layers 

The tensile load developed in a layer of geosynthetic reinforcement is based on the contributory area (Ac(n)) of the 
layer and the integration of lateral pressure over the effective height of the wall defined by the contributory area 
(Figure 7-12).  The total applied tensile force in the geosynthetic reinforcement (Fg(n)) can be calculated using the 
average horizontal pressure at the midpoint of the contributory area as follows:

	 ( ) l ( )[ ] cos( )g n i n d aint c n iF D q q K A= γ + + δ - ω 	 [Eq. 7-61]

7.5.3:  Tensile Overstress of Reinforcement Layers		

The reinforcement layers must have sufficient tensile capacity to resist the applied tensile load (Fg(n)) for that given 
reinforcement layer. The load on the reinforcement layers increases with increasing depth and with the increasing 
contributory area of the layer (larger vertical spacing between layers). 
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The factor safety against overstress is calculated as follows:

	
( )

( )

( )

n
to n

g n

LTDS
FS

F
=

	
[Eq. 7-62]

The minimum factor of safety for overstress should typically be 1.5 (see Table 5-2). If the factor of safety is less than 
this minimum, either the applied tensile load (Fg(n)) on the geogrid should be reduced by reducing the contributory 
area for each geogrid (by adding layers and reducing vertical spacing between geogrid layers) or by using a geogrid 
with a higher long-term design strength (LTDS).
	

7.5.4:  Pullout of Reinforcement 

The applied tensile force (Fg(n)) in the geosynthetic reinforcement must be transferred to the soil through the 
development of an anchorage capacity beyond the active wedge of soil movement defined by a failure surface 
inclined to the horizontal at αi (Figure 7-12).  Pullout of reinforcement layers is prevented by sufficient anchorage 
capacity, which maintains a coherent mass of soil in the reinforced SRW.  The ratio of the developed anchorage 
capacity (AC(n)) to the applied force (Fg(n)) in any geosynthetic reinforcement layer is designated by the factor of 
safety against pullout FSpo.  This represents a reasonable assessment of the geosynthetic material’s potential to resist 
pullout from the soil.  Routinely, the uppermost layer of reinforcement is most critical due to reduced overburden 
pressure and longer length needed at the top of the wall to extend beyond the internal failure plane.  

7.5.4.1:  Anchorage Capacity of Reinforcement 

The anchorage capacity (AC(n)) of geosynthetic reinforcement is related directly to the available soil shear strength 
through the coefficient of interaction for pullout parameter (Ci ).  The magnitude of anchorage capacity is controlled 
by the anchorage length (La(n) ), which is the portion of length for a specific geosynthetic layer beyond the failure 
surface (αi ) (see Figure 7-12).  The minimum anchorage length for structures is 1 ft (3 m).  The anchorage capacity 
(AC(n)) of the geosynthetic reinforcement proportional to the anchorage length (La(n)  ), peak shear strength of 
anchorage soil (tan ϕi), coefficient of interaction for pullout (Ci ) and the depth of soil overburden (dn ) acting over 
the anchorage length. 

The anchorage capacity (AC(n)) is calculated as follows: 

	 ( ) ( ) ( )2 ( ) tann a n i n i d iAC L C d q= γ + φ
	 [Eq. 7-63]

Only the dead load component of the uniform surcharge distribution enters the calculation above in order to be 
consistent with treatment of the dead and live surcharge loads described in Section 7.1.3.  The coefficient 2 in the 
above equation is typical of many anchorage models and reflects resistance being mobilized on both the top and 
bottom of the geosynthetic layer and is consistent with the definition of Ci  in Section 2.5.3.

The anchorage length (La(n) ) for any geosynthetic layer within the reinforced zone can be calculated as follows:
	
	 ( ) ( ) ( )( tan(90 )) ( tan )a n u n i nL L W E E= - - - α + ω 	 [Eq. 7-64]

The available soil shear strength that can be transferred to the geosynthetic reinforcement to resist pullout is 
controlled by the normal overburden stress acting over the anchorage length (La(n) ).  The average normal overburden 
pressure is proportional to the average overburden depth (dn ) (i.e., at the midpoint of the anchorage length) that is 
calculated accordingly:
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For Slope Case A :  broken slope crests before mid-point of anchorage length

	 ( ) ( )n n sd H E h= - + 	 [Eq. 7-65A]

For Slope Case B:  infinite slope or broken slope crests beyond mid-point of anchorage length
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[Eq. 7- 65B]

7.5.4.2:  Pullout Factor of Safety

The factor of safety against reinforcement pullout should be greater than or equal to the minimum required for 
design (typically 1.5, see Table 5-2).  If the factor of safety of any layer does not satisfy the specified design value, 
it can usually be increased in length or placed at a lower level to accommodate the design.  There is no requirement 
in this manual for reinforcement layers to have uniform length, with the exception that each be equal to or greater 
than the minimum base width length (L) established from external stability calculations.

The Factor of Safety against pullout at the individual reinforcement layers is:
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g n
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F
=

	
[Eq. 7-66]

7.5.5:  Internal Sliding Failure

The potential for an internal sliding failure to propagate along the surface of a reinforcement layer must be examined 
for each reinforcement elevation (E(n)) (Figure 7-14). The potential for this type of failure mechanism increases as 
the shear resistance between the soil and reinforcement material decreases.  The shear resistance available at a 
geosynthetic surface is described by parameter ( )s nR′ , (Equation 7-75) in this manual and is proportional to the 
coefficient of direct sliding (Cds) of the geosynthetic material. The test method to determine Cds is described in Section 
2.5.3.2.  The maximum value of Cds is 1.0.  The failure plane generated along the surface of a geosynthetic layer will 
also have to propagate through the interface between SRW units. This interface will provide some additional shear 
capacity described by parameter Vu(n).

The potential for an internal sliding failure should be examined for each reinforcement elevation. The driving 
force PaH(n) for the internal sliding failure is calculated in a manner similar to external sliding but over the external 
height of geogrid layer elevation to the top grade at the back of the reinforced zone, as shown in Equations 
7-14 through 7-21, and Equation 7-29, substituting (Hext - E(n) ) for (Hext ). The internal sliding forces can then be 
calculated as follows:

7.5.5.1:  Internal Sliding Forces

Horizontal Components

The horizontal component of Ps is calculated as follows:

	 ( )
2

( ) 0.5 ( ) cos( )sH n aext r ext enP K H E= γ - δ - ω
	 [Eq. 7-67]
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Figure 7-13:  Definition of Overburden Depth
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Figure 7-14:  Internal Sliding Stability Analysis – Forces and Definitions – Infinite Slope Condition

P = total active earth force generating sliding on geosynthetic n
W = weight of soil on geosynthetic n
L = length of reinforcement in internal sliding acted upon by backslope
L = length of reinforcement used in internal stability analysis
L = length of reinforcement
α = orientation of external failure plane
R = shear resistance along geosynthetic
E = elevation of layer n above reference datum
V = shear capacity of SRW unit
q = live load uniform surcharges
q = dead load uniform surcharges
W = weigth of slope above the reinforced zone
H = total height of soil at the back of the reinforced zone = H+h
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The horizontal component of Pq , when acting as a driving force in stability calculation, is calculated as follows:

	 ( )( ) ( )cos( )qdH n d aext ext enP q K H E= - δ - ω
	 [Eq. 7-68]

	 ( )( ) ( )cos( )qlH n l aext ext enP q K H E= - δ - ω
	 [Eq. 7-69]

Vertical Components

The vertical component of Ps  is calculated as follows:

	 ( )
2

( ) 0.5 ( ) sin( )sV n aext r ext enP K H E= γ - δ - ω
	 [Eq. 7-70]

The vertical component of Pq, when acting as a driving force in stability calculation, is calculated as follows:

	 ( )( ) ( )sin( )qdV n d aext ext enP q K H E= - δ - ω
	 [Eq. 7-71]

	 ( )( ) ( )sin( )qlV n l aext ext enP q K H E= - δ - ω
	 [Eq. 7-72]

Finally,

	 ( ) ( ) ( ) ( )aH n sH n qdH n qlH nP P P P= + + 	 [Eq. 7-73]

	 ( ) ( ) ( ) ( )aV n sV n qdV n qlV nP P P P= + + 	 [Eq. 7-74]

7.5.5.2:  Internal Sliding Resistance

Internal sliding resistance is due both the soil friction resistance along the geosynthetic layers considered and the 
shear resistance of the SRW unit facing interface at the layer analyzed.

The sliding resistance over the geosynthetic reinforcement ( )s nR′ is calculated as follows:

	 ( ) ( ) ( ) ( )( ) tanS n ds d ri n r sV n qdV n iR C q L W W P Pb b′ ′= + + + + φ
	 [Eq. 7-75]

If the dead surcharge load is offset, the term Lβ in the above equations may need to be replaced by the term Lβq 
(Equation 7-29) or qd may need to be removed entirely (Equation 7-28).

Also, in this equation, ( )ri nW ′ is the weight of the soil from the elevation of the nth layer to the top of wall, at the face, and 
Wrβ is the weight of the soil in the slope above the top of reinforced zone. PsV(n) and PqdV(n) are the vertical components 
of the earth pressures occurring from elevation of the nth layer analyzed up to the top grade at the back of the reinforced 
zone. Note that Wrβ and Lβ  are the same for the external sliding calculations presented in Section 7.4.2.  

The weight of soil ( ( )ri nW ′ ) acting on L′ is calculated as follows using the geometry illustrated in Figure 7-14:

	 ( ) ( )( )ri n n iW L H E′ ′= × - × γ 	 [Eq. 7-76]

The length of geosynthetic reinforcement (L′) over which sliding can occur has been discussed in Section 7.4.1 for 
External Stability analysis.  The length of the reinforcement does not change in the Internal Sliding analysis.

The weight Wrβ remains the same as calculated from Section 7.4.1.3, Equation 7-31.
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The shear capacity (Vu(n)) at the interface between SRW units, which will resist the internal sliding failure, can be 
calculated by using Equation 6-30 from Section 6. The shear capacity will be controlled by the weight of SRW units 
(Ww(n)) (Eq. 6-20) acting on the interface and can be determined using:

	 ( ) ( ) tanu n u W n uV a W= + λ 	 [Eq. 7-77]

7.5.5.3:  Factor of Safety Internal Sliding at Each Reinforcement Layer

The factor of safety of internal sliding is calculated as follows:

	

( ) ( )
( )

( )

s n u n
sl n

aH n

R V
FS

P
′ +

=
	

[Eq. 7-78]

The FSsl(n) at each geosynthetic reinforcement level should be greater than or equal to that required (typically 1.5, 
see Table 5-2).  For substandard FSsl(n), the overall length of geosynthetic reinforcement (L) must be increased for 
the layer analyzed and all reinforcement layers above it.  Alternatively, the reinforcement placement elevations may 
be altered to reduce the sliding force (PaH(n)) and/or increase the length L′  over which sliding occurs .  
					   
Section 7.6:  Local Stability of SRW Units

The unique dry-stacked construction method using SRW units and their connection to geosynthetic reinforcement 
layers requires that stability analyses be carried out to ensure the column of SRW units remains intact and does not 
bulge excessively.  The following local stability analyses limit the vertical spacing of geosynthetic reinforcement: 

●● Facing Connection:  The design strength of the facing connection between SRW units and the geosynthetic 
reinforcement must not be exceeded to ensure integrity of the composite system.

●● Crest Toppling:  The unreinforced height of SRW units at the top of the structure must not lead to toppling 
(overturning) or sliding of the units near the crest of the wall.  The analyses performed are the same as 
overturning and internal stability for conventional SRWs, as covered in Sections 6.4.4 and 6.5.

Visual identification of the structural performance of this composite system of SRW units, soil and geosynthetic 
reinforcement is largely determined by the local stability of SRW units and influenced by construction procedures 
(Section 6).  Local stability is the interaction with, and connection of, SRW units to geosynthetic reinforcement 
as it relates to the two main failure modes shown above.  Local stability is controlled by the specific engineering 
performance properties of SRW units.

Figure 7-15:  Main Modes of Failure for Facing Stability

Facing ConnectionCrest Toppling
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There must be sufficient connection strength and stiffness between the SRW unit and geosynthetic reinforcement such 
that the geosynthetic reinforcement does not rupture or pull through the SRW units.  Additionally, the geosynthetic 
reinforcement placement elevations should be vertically spaced so the applied lateral forces are safely below the 
shear capacity of the SRW units.  If the shear capacity between SRW units is exceeded, undesirable localized 
bulging of the SRW may result.

The SRW units near the top of the wall must be examined to ensure they are stable as a free standing retaining wall 
above the highest reinforcement placement elevation.  The examination of the upper unreinforced SRW height for 
sliding and overturning failure modes is performed in the same manner as the gravity SRW analysis (Sections 6.4.3 
and 6.4.4). 

For facial stability analysis only, if a surcharge is offset a sufficient distance behind the back of the units, the 
destabilizing forces due to the surcharge can be removed from the driving force equations for the facing elements 
that are above the setback surcharge. The calculation of an influence elevation of an offset surcharge and associated 
changes in driving force equation are further explained in Section 7.6.3.

7.6.1:  Facing Connection Strength 

The interface between the geosynthetic reinforcement and SRW unit at each reinforcement placement elevation 
(E(n)) must have sufficient connection strength to preclude rupture or slippage of the reinforcement due to the 
applied tensile force (Fg(n)).  The full tensile load (Fg(n)) on a reinforcement layer typically occurs at the intersection 
of the failure plane with the geosynthetic, recognizing that much of this load may be shed before reaching the 
facing.  However, as a conservative simplification, in this manual the tensile load is considered to be fully exerted 
at the facing connection and the influence of the vertical component of the earth pressures is ignored. 

The ultimate strength of the connection is evaluated using the limit state connection strength model as deter-
mined below.

Figure 7-16:  Connection Capacity vs. Long-Term Design Strength for a Given Reinforcement
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The connection strength (Tconn) relationship between any specific combination of geosynthetic reinforcement and 
height of SRW units can be determined through laboratory testing as defined in Section 2.1.3.1 and Appendix C.  
Laboratory testing is required to establish the design facing connection strength relationship parameters, acs and λcs, 
to relate connection strength Tconn and applied normal load.

The connection strength can be influenced by the weight of SRW units Ww(n) (Equation 6 -18 modified for the height 
of this column of SRW units) acting on the interface (H - E(n)).  The connection strength (Tconn (n)) at each geosynthetic 
reinforcement placement elevation (E(n)) can be calculated as:

	 ( ) ( ) tanconn n cs W n csT a W= + λ 	 [Eq. 7-79]

where acs and λcs will be acs1, λcs1 or acs2, λcs2 depending on the normal load (WW(n)) and Tconn(n) cannot exceed TconnMAX .

The connection must be able to resist the tensile force that is transferred from the reinforced soil mass to the 
connection of a SRW system (Fg(n)) which is a function of the vertical spacing of the reinforcement and proximity 
of the internal failure surface to the connection. 

The SRWall Version 4.0 allows for a bi-linear (in addition to the TconnMAX )   definition of the connection capacity.  
In the software, the connection capacity is determined by means of inflection points as shown in Figure 7.16.

	

( )
( )

( )

conn n
cs n

g n

T
FS

F
=

	
[Eq. 7-80]

The calculated FS must be greater than or equal to the recommended minimum, which in this case is 1.5.  
		

Figure 7-17: Geometry and Forces used to Calculate Crest Toppling
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7.6.2:  Crest Toppling

The SRW units above the highest reinforcement placement elevation must be examined to ensure that they will 
perform as a free standing retaining wall.  The examination of the upper unreinforced SRW height for sliding (shear) 
and overturning failure modes is done in the same manner as the conventional SRW analysis, Sections 6.4.3 and 
6.4.4 respectively, using the minimum safety factors established for critical structures in Table 5-2. 

The earth pressures and resisting forces calculated in Section 6.4.1.2 for conventional overturning are modified as 
follows for crest toppling analysis. Rather than one single height, a series of heights at each unit interface elevation  
(z(u)) is analyzed for overturning stability, where u indicates the unit interface under consideration starting at the 
unit interface at top layer of geogrid up until the top unit interface is reached. Therefore, similar to the Equations 
6-6 to 6-12:

	 Ps(z) = 0.5 Kaint γi z
2	 [Eq. 7-81]

	 Pq(z) = (q1 + qd) Kaint z	 [Eq. 7-82]

	 PsH(z)  = 0.5Kaint γi z
2 cos(δi - ω)	 [Eq. 7-83]

	 PqH(z) = (q1 + qd) Kaint z cos (δi - ω)	 [Eq. 7-84]

and similarly, Equations 6-14 to 6-16, become:

	 PsV(z)  = 0.5Kaint γi  z
2 sin(δi - ω)	 [Eq. 7-85]

	 PqdV(z) = qd Kaint z sin(δi - ω)	 [Eq. 7-86]

	 PqlV(z) = ql Kaint z sin (δi - ω)	 [Eq. 7-87]

Finally, the Factor of Safety for crest toppling can be calculated as follows:

	 FSct(z) = Mr(z)/Mo(z)	 [Eq. 7-88]

where:

	 Mr(z) = Ww Xw+ PsV(z) (Wu + (z /3) tan ω) + PqdV(z) (Wu + 0.5 z tan ω)	 [Eq. 7-89]

	 XW = Gu + 0.5 z tan ω - 0.5 ∆U 	 [Eq. 7-90]

and,

	 Mo(z) = PsH(z) (z /3) + PqH(z) (z /2)	 [Eq. 7-91]

The driving forces of surcharges for reinforced wall crest toppling calculations have the same exception for offset 
surcharges as connection strength calculations. The driving forces of an offset surcharge may be removed in the 
calculation at particular unit interface, if that interface elevation (z) is above the influence elevation Eqdinfl or  Eqlinfl  
of the offset dead or live surcharge respectively, as explained in Section 7.6.3.
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The reinforced SRW design is complete when the FSct(z) for the intended maximum unreinforced height is greater 
than or equal to the minimum required safety factors (Table 5-2).  Otherwise, if an unacceptable FSct(z) is identified, 
the maximum unreinforced height should be reduced by incorporating an additional layer of reinforcement near the 
top of the wall or adjusting the vertical spacing of the existing reinforcement layout.

7.6.3:  Offset Surcharge Load Reduction in Facial Calculations	

For a reinforced wall, the influence of a surcharge in the facial stability calculations is considered to extend out 
and down at an angle equivalent to 1H:2V from the beginning of the surcharge behind the wall face (Figure 7-18). 
The horizontal offset distance behind the back of the top unit for either the dead qdoffset or live qloffset load is given. 
The elevation where the line of influence of the offset surcharge intersects the back of the SRW units  (Eqinfl ) varies 
depending on the top-of-wall geometry and where the surcharge begins.

Figure 7-18:  Elevation of Influence of Offset Surcharge at Back of Units
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The elevation where the line of influence of the offset surcharge intersects the back of the SRW units (Eqdinfl or Eqlinfl)  
is calculated using the horizontal distance qdoffset or qloffset and height above the top of wall where the offset surcharge 
begins.  Because of the restriction in this manual that an offset of a surcharge is only accounted for on level grades, 
the start of a setback surcharge must be on the level portion of a broken slope or on a level top of wall grade.

From this, define the maximum height of a surcharge at its offset (hinflmax) as,

	

2 tan tan tan
2

2 taninflmax

H H
h

 b - ω b 
 =

- b 	

[Eq. 7-92]

which reduces to 0 for a level grade. If the slope breaks beyond the internal influence zone behind the wall, 
it is considered a continuous infinite slope and any offset of the surcharge is ignored for purposes of facial 
calculations. Such a surcharge is treated as a uniform surcharge starting at the back of the top wall unit and 
covering the entire slope.

	

2
1 2 tan
loffset loffset

qlinfl

q h
E H

-
= -

- ω 	 [Eq. 7-93]

	

2
1 2 tan
doffset doffset

qdinfl

q h
E H

-
= -

- ω 	
[Eq. 7-94]

where:

Slope Case A:	 hdoffset  and/or hloffset < hinflmax, (broken slope crests within the zone of influence):  qdoffset  and  qloffset are 
located within the zone of influence and are considered in the calculations;

Slope Case B:	 hdoffset and/or hloffset ≥ hinflmax, (broken slope crests beyond the zone of influence or infinite slope):  
hdoffset and/or hloffset = 0, qdoffset  and/or  qloffset = 0 (any actual offset is ignored) 

Level Grade: 

	 When β = 0,  Equation 7-93 or Equation 7-94 can be used with hdoffset and hloffset  = 0.	

Once the elevation at which the influence of the offset surcharge intersects with the back of the wall units is 
determined (Eqlinf  and Eqdinf), the presence or absence of the surcharge force(s) on each facial elevation analyzed for 
connection strength and crest toppling can be determined as follows:

For Connection Strength:

If the elevation of the connection being evaluated is:

	 E(n) > Eqdinfl or E(n) > Eqlinfl	 [Eq. 7-95]

then Equation 7-61 

( ) l ( )[ ] cos( )g n i n d aint c n iF D q q K A= γ + + δ - ω  
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can be modified by setting  qd or ql = 0 in this equation, respectively, at a given reinforcement elevation for connection 
strength calculations only.

For Crest Toppling:

If the elevation of the connection being evaluated is:

	 z > Eqdinfl or z > Eqlinfl	 [Eq. 7-96]

then for the driving force earth pressure due to surcharge can be modified by setting  qd or ql = 0 in the appropriate 
equations, respectively.

Section 7.7:  Example Calculations 

An example calculation using this design methodology to analyze a typical design problem for a generic reinforced 
soil SRW is presented in Appendix B.  The example calculation serves to illustrate many of the consequences of 
certain design property assumptions and important intermediate calculation steps.
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SECTION 8
INTERNAL COMPOUND STABILITY

As the name implies, Internal Compound Stability (ICS) affects the internal components of the retaining wall 
system, including the facing elements, and its components.  Because ICS is influenced by loading conditions outside 
the reinforced fill area, it is referred to as a compound analysis.  It should be clear that ICS analysis is not a substitute 
for Global Stability analysis.  For all intents and purposes, it is a special case of the broader, more generalized 
Global Stability analysis.

ICS analysis is the evaluation of failure surfaces that originate in a given range behind a soil-reinforced SRW, 
exiting at the face of the wall.  The distance is the greater of twice the height of the wall (2H) or, the height of the 
projection from the tail of the reinforcement layers to the surface (Hext ) plus a distance equal to the length of the 
reinforcement (L).

Examples of potential circular failure surfaces are indicated in Figure 8-1.  Except for the surfaces described by A, 
F and G in this figure, the remaining will be considered in the ICS analysis.  These surfaces describe failure planes 

Figure 8-1:  Scope of Internal Compound Stability (ICS) Analysis
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that are outside the scope of this design manual.  The surface described by A is considered to be a surficial stability 
concern and should be identified by the geotechnical engineer.  The surface described by F includes the contribution 
of the foundation soil which, although important, is not part of this analysis.  The surface defined by G is a global 
stability consideration outside the scope of ICS.  The remaining surfaces, which fall directly within the retaining 
wall structure, will be considered in the analysis.

For given soil parameters, the soil-reinforced SRW’s resistance to ICS failures is a function of reinforcement length, 
long-term design strength, vertical spacing, as well as the relative stiffness of the facing elements.  

Section 8.1:  Model

Figure 8-2 illustrates the model on which ICS is based. Entry points are established at the crest of the wall as shown 
on the Figure 8-2.  From the projection of the reinforcement at the crest of the wall to a distance of the greater of 
(2H) or (Hext + L), equidistant points are established and will serve as the entry points of the failure surface.  The 
exit points coincide with the back of the blocks.

For every pair of entry points and exit points, a number of circular failure surfaces are generated and analyzed.  For 
every circular failure surface generated, the soil mass is divided into slices as shown in Figure 8-3.

Figure 8-2:  ICS Model
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Figure 8-3:  Potential Failure Surface

Section 8.2:  Unreinforced Section

Each slice is then analyzed using the Simplified Bishop procedure, which assumes that the forces on the sides of the 
slices are horizontal (i.e., no shear stresses between slices).  This is represented in Figure 8-4.

The equation for the equilibrium of moments about the center of the circle (including forces due to weight (W), 
external load (P) and shear strength of the soil only) as well as a pseudo-static term due to horizontal seismic load  
located at the center of each slice, can be written as follows: 

	
( ) tan ( )sin 0W PR R W P

FS
+ φ

- + α =∑ ∑
	

[Eq. 8-1]

Rearranging the terms and solving for FS, the equation becomes:

	

( ) tan

( )sin

W P
mFS

W P
α

+ φ

=
+ α

∑
∑ 	

[Eq. 8-2]

where

	
sin tancosm

FSα

α φ
= α +

	
[Eq. 8-3]
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Note that the term FS appears on both sides of the equation.  This means that the calculation process is iterative.  
The most accurate result is when the FS on both sides of the equation converge.

At this point, no distinction has been made between live loads and dead loads as they apply to the ICS analysis.  It 
is common practice to neglect the effects of the live loads in the resisting component (numerator in Equation 8-2).  
It is however, conservatively included in the driving component (denominator in Equation 8-2).  On the other hand, 
dead loads are applied to both the resisting and driving components.

Equation 8-2 is used to define the Factor of Safety of an unreinforced section based on the Simplified Bishop 
procedure, in which the following assumptions are made:

●● Circular slip surface;
●● Horizontal forces between slices (i.e., no shear stresses between slices);
●● Moment equilibrium about the center of the circle is satisfied, and;
●● Force equilibrium in the vertical direction for each slice is satisfied.

Section 8.3:  Reinforced Section

Additional forces can be applied to the soil slice such as reinforcement forces (T) as shown in Figure 8-5, as well as 
forces from the contribution of the facing (not shown).  In this manual, these additional forces will be treated in a 
fashion similar to the way AASHTO [Ref. 36] and Duncan and Wright [Ref. 66] treats reinforcement in a reinforced 
section.  The contribution of the facing will be treated as a reinforcement force.

Figure 8-4:  Soil Slice
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Figure 8-5:  Soil Slice with Reinforcement Contribution
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Therefore, the modified Bishop’s Factor of Safety can be defined as follows:

	
( ) ( )

( ) ( )
reinforcement facing

reinforced unreinforced
DRIVING

MR MR
FS FS

M
+

= +
	

[Eq. 8-4]

where,
FS(unreinforced) 	 =	 is defined  by Equation 8-2
MR(reinforcement)	 =	 resisting moment generated by the reinforcement force(s) intersecting the failure plane
MR(facing)	 =	 resisting moment generated by the forces at the face of the wall
MDRIVING	 =	 ( )sin( )W P+ α∑

Section 8.4:  Contribution of the Reinforcement

When a potential slip circle intercepts one or more reinforcement layers, the contribution of the reinforcement(s) 
layer(s) is considered in the ICS process as a moment only.  In this manual, it is assumed that the reinforcement 
force is fully mobilized (i.e., the reinforcement is permitted to rotate to the angle (α), the angle of the failure plane 
for the particular soil slice).  Based on these assumptions, the following formula can be written for the resisting 
moment due to the reinforcement force(s):

	 ( inf ) ( cos )re orcement availableMR T R= α∑ 	
[Eq. 8-5]

where,

Tavailable	 =	 available reinforcement force at the location of the intersection of the failure plane.

Depending on the location of the intersection of the reinforcement layer and the slip circle, Tavailable is the lesser of 
the Long Term Design Strength (LTDS) of the reinforcement and the pullout capacity of the reinforcement.  Note 
that the summation ( cos )availableT R α∑  applies only to the slices where the reinforcement intersects the slip surface.
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Section 8.5:  Contribution of the Facing

By definition, the ICS analysis requires that all potential failure surfaces exit at some point within the retaining wall 
structure.  Therefore, every potential failure surface will exit at one of the following locations:

●● At the base course where the bottom block rests on the leveling pad,
●● At a block/block interface, or
●● At a block/reinforcement/block interface.

Depending on the location of the exit point of the failure surface, the equation for the resisting moment due to the 
facing will take on the following form:

	 ( )facing availableMR F R= 	 [Eq. 8-6]

For the case where the failure surface intersects the bottom course and the leveling pad (Case 1 in Figure 8-6):

	 tanavailable dF N= µ φ 	 [Eq. 8-7]

where,
μ	 =	 friction coefficient
N	 =	 normal load
ϕd	 =	 friction angle of leveling pad material

The 32 in. (813 mm) spacing on which the connection capacity is distributed (see Figure 8-6) is based on the 
recommendation that reinforcement spacing be no greater than 24 in. (610 mm).  For the cases shown, the block 

Figure 8-6:  Distribution of Connection Capacity Contributions
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height is assumed to be 8 in. (203 mm). For blocks with heights other than 8 in. (203 mm), the connection load 
at each unit interface will vary from this example because the unit interfaces are at different locations on the 
distribution than the eight inch unit. However, regardless of the unit height, the distribution is still be considered to 
range from 100 percent down to 0, linearly over 32 in (813 mm).

If applicable, the proportionate contribution of the connection capacity can be added to the facing contribution:

( tan )available CS CSF a N= + λ∑ 	 (for connection capacity contributions above the failure surface)

For the case where the failure surface is located at a reinforcement layer (Case 2 in Figure 8-6): 

tanavailable u uF a N′ ′= + λ 	 (equation for block/reinforcement/block shear resistance)

Finally, for the case where the failure surface is located between two blocks (Case 3 in Figure 8-6), the lesser of the 
two following quantities: 

tanavailable u uF a N= + λ 	 (equation for block/block shear resistance)

( tan )available CS CSF a N= + λ∑ 	 (for connection capacity contributions above and below the failure surface)

where acs and λcs will be acs1, λcs1 or acs2, λcs2 depending on the normal load (N) (see Figure 7-16).

Again, if applicable, the proportionate contribution of the frictional resistance at the block/leveling pad, μ N tan ϕd , 
can be added to the summation of the connection capacity contribution.

Section 8.6:  Summary

In this manual, the ICS process follows a two-part analysis to define the Factor of Safety, as described in Equation 
8-2.  The first part is to determine the stability of the unreinforced section using the Simplified Bishops Method.  The 
second part is to add the contribution of the reinforcement and the facing.

Figure 8-7:  Components of ICS Analysis
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Substituting Equations 8-4 and 8-5, Equation 8-2 further reduces to:

	

( ) tan ( cos )

( ) sin

available available
W P T F

mFS
W P

α

+ × φ
+ × α +

=
+ × α

∑ ∑
∑ 	

[Eq. 8-8]

The minimum FSICS for each failure plane should be FSICS = 1.3 (Table 5-2). If initial wall design indicates 
failure planes with a substandard FSICS, the resisting forces can be improved in a number of ways: adding layers 
of reinforcement, decreasing vertical spacing between layers, using higher-strength reinforcement, lengthening 
reinforcement layers, and improving the reinforced soil properties. Which of these design solutions, or combination 
of them, is the best strategy will depend on the geometry of the critical failure planes and the efficiencies of the 
various means to address them. Please note that while strength increases of the reinforcement or soil within the 
reinforced zone will improve ICS results, these changes may not result in improved foundational or global stability 
in a geotechnical evaluation. Meeting needed ICS factors of safety with increased reinforcement length may yield 
the added benefit of improving geotechnical stability issues also. In this regard, it may be helpful for the wall design 
engineer and geotechnical engineer coordinate efforts to develop most efficient means to meet both wall design 
stability and global stability requirements.

The wall designer and the geotechnical engineer also must be aware that because of the limited extent of entry and 
exit points in the ICS analysis, critical failure surfaces may be outside the range of the wall design limits. The greater 
the inclination of the backslope, the more likely a there is a geotechnical, global stability concern beyond the what 
the wall design and ICS analysis is addressing. Also, if there is a poor foundation material or a toe slope beneath 
a wall, it is more likely global failure surfaces exiting below the wall, as such as planes A, F, and G in Figure 8-1 
(which are not evaluated by the wall design ICS) will be more critical than ICS failure planes. A wall design with 
adequate external and ICS factors of safety may have global, deep-seated failure planes that do not have adequate 
factors of safety. This is why, like any other structures, retaining walls should have a geotechnical evaluation of the 
foundational and global stability around them, as discussed in Section 12.

Given these stated limits, ICS analysis is certainly not a substitute for a global, geotechnical evaluation. However, 
in some cases, ICS results can provide an indication that global stability is a critical issue. If the numerous critical  
failure planes all enter or exit at the outside limits of the ICS analysis, such as at the 2H or Hext + L limits behind 
the wall, this indicates global failure planes beyond this limit are likely critical.  Please note however, the global 
stability around SRWs should be evaluated and addressed regardless of the indications of the ICS, as discussed in 
Section 12

When the assumed friction angle of the soil in the wall backslope approaches the inclination angle of the backslope, 
there may be cases where it is not possible, within the wall design, to make the uppermost ICS failure planes meet 
the minimum ICS factor of safety of 1.3.  In these cases, even high-strength layers of grid in every course of units 
at the top of the wall will not adequately improve the ICS factors of safety exiting out the top wall units. This is an 
indication the overall backslope, irrespective of the wall, may have low slope stability factors of safety and may 
be have critical surface slope stability failure planes outside the ICS analysis, such as plane A in Figure 8-1.  This 
methodology considers it acceptable wall design practice to allow the ICS factor of safety for the upper-most failure 
planes to be less than 1.3, provided the stability of the backslope and top of wall is addressed and evaluated by 
methods beyond the wall design. Typically such top of wall backslope stability issues can be addressed by placing 
reinforcement just above the wall face, in the backslope and this solution can be evaluated by a slope stability 
analysis.
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Comment:  Version 4.0 of the SRWall Software carries out Internal Compound Stability (ICS) as described 
above.  The terminology used in the reports from the software however, does not match the one presented 
above.  The following relationships should be helpful in matching the terms used in the software:

( ) tanin the software refers to

in the software refers to ( )sin

in the software refers to cos

or in the software refers to

in the software refers to

r

s

grid available

u available

W PF
m

F W P

F T

V Conn F

Wt W

α

+ φ

+ α

× α

∑ ∑

∑ ∑
∑ ∑
∑ ∑
∑ ∑

or in the software refers toQl Qd P∑ ∑ ∑
Section 8.7:  Example Calculations 

An example calculation using this design methodology to analyze a typical design problem for a generic reinforced 
soil SRW is presented in Appendix B.  The example calculation serves to illustrate many of the consequences of 
certain design property assumptions and important intermediate calculation steps.
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SECTION 9
SEISMIC DESIGN OF SEGMENTAL RETAINING WALLS 

This section describes a method of analysis and design for the stability of geosynthetic reinforced segmental retaining 
walls (SRW) under seismic loading.  The method extends the approach for static structures (Sections 6 and 7) and 
will closely parallel these sections.

Section 9.1:  Design Assumptions

9.1.1:  Assumptions

The seismic design method adopts a pseudo-static approach and is generally based on the Mononobe-Okabe (M-O) 
method to calculate dynamic earth forces. The design and analysis methodology described within this document 
applies to the following conditions:

1.	 SRW structures are free-standing and able to displace horizontally at the base and yield laterally through 
the height of the wall.

2.	 Reinforced and retained soils are cohesionless, unsaturated, and homogeneous.  Soil strength is described 
by the Mohr-Coulomb failure criterion.  The apparent cohesive strength component reported under Mohr-
Coulomb failure criterion is ignored.

3.	 Vertical ground acceleration is zero (kv=0).  Vertical ground acceleration is ignored for the pseudo-static 
analysis presented based on the presumption that the horizontal and vertical acceleration associated with a 
seismic event do not coincide.

4.	 Geometry is limited to that presented in this document (i.e. infinite or broken-backslope, and constant 
horizontal foreslope angle).

5.	 Retained and reinforced soils are placed to a depth corresponding to the full height of the placed SRW 
facing units (i.e. wall design height (H))

6.	 Cap units are ignored in the stability analysis and assumed to be securely attached to the underlying course 
of SRW units in such a manner that they cannot be dislodged during ground shaking.

7.	 The stabilizing influence of the wall embedment is ignored with the exception of bearing capacity analyses.
8.	 No permanent surcharge or footing load exists within the active failure wedge and may require a more 

exhaustive analysis, which is beyond the scope of this manual.
9.	 Global Stability involving failure of soil volumes beyond the base of the SRW unit column and/or 

geosynthetic reinforced fill zone is not considered.
10.	 SRW structures are built on competent foundations for which excessive settlement, squeezing or liquefaction 

are not potential sources of instability.

	 9.1.2 – Need for Separate Static and Seismic Analyses

It is important to note the SRW seismic analysis explained in this section must be performed in addition to, not in 
lieu, of the static analysis. Seismic analysis is not just a static analysis with higher loads; this seismic analysis has 
lower minimum factors of safety, ignores live loads, and allows for higher geogrid design strengths compared to 
static analyses. Because of these differences, an engineer could satisfy seismic requirements this seismic section 
while, incorrectly, not meeting the static requirements of Section 6 and 7. So both seismic and static analyses must 
be performed separately, with the final wall design layout providing sufficient factors of safeties for both the seismic 
and static cases, independently.
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Section 9.2:  Calculation of Earth Forces and Failure Plane

A pseudo-static approach based on the Mononobe-Okabe (M-O) method is used to calculate the total active earth 
force (PaE) imparted by the backfill soil on a retaining wall structure.  The application of force against the facing 
column of a conventional SRW structure is illustrated in Figure 9-1 and includes the influence of ground acceleration 
due to earthquake loads.  Force (PaE) is calculated as follows:

	
20.5(1 )aE v aEP k K H= ± γ 	 [Eq. 9-1]

where:
γ	 =	 unit weight of the soil
H	 =	 height of the wall
PaE	=	 dynamic earth force (force/length of wall)

 The general form of the dynamic earth pressure coefficient (KaE) is as follows:

	

2

2

2

cos ( )

sin( )sin( )cos cos cos( ) 1
cos( )cos( )

aEK φ + ω - θ
=

 φ + δ φ - b - θ
θ ω δ - ω + θ + δ - ω + θ ω + b  	

[Eq. 9-2]

Figure 9-1: Forces and Geometry used in Pseudo-Static Seismic Analysis of SRWs
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where:
ϕ	 =	 peak soil friction angle,
ω	 =	 wall facing column inclination (+ clockwise from the vertical),
δ	 =	 mobilized interface friction angle at the back of the block (or the reinforced soil zone),
β	 =	 backslope angle (from horizontal), and
θ	 =	 seismic inertia angle given by:

	

	
tan

1
h

v

ka
k

 
θ =  ±  	

[Eq. 9-3]

Quantities kh and kv are horizontal and vertical seismic coefficients, respectively, expressed as fractions of the 
gravitational constant (g) and are further defined in Section 9.4. The values of kh and kv are assumed to be uniform 
and constant throughout the facing column, the reinforced soil mass, and in the backfill (retained) soils.  In this 
manual, horizontal inertial forces are assumed to act outwards (+ kh) to be consistent with the notion of active earth 
pressure conditions.  The convention adopted here is that a positive vertical seismic coefficient (+ kv ) corresponds 
to a seismic inertial force that acts downward and a negative seismic coefficient (-  kv ) corresponds to a seismic 
inertial force that acts upward.

For the case kv  = 0, Equation 9-3 simplifies to:

	 θ = atan kh	 [Eq. 9-4]

Examination of the trigonometric terms in Equation 9-2 shows that solutions are only possible for θ < ϕ - β.  Hence, 
the maximum value of the horizontal seismic coefficient for which there are solutions to Equation 9-2 is restricted 
to kh < tan(ϕ - β).  It is clear from this equation that the angle of slopes at the crest of the retaining wall will be 
limited by the friction angle of the soil and the coefficient of acceleration.  It also implies that modeling a slope as 
a surcharge may be inappropriate under these conditions.

And Equation 9-1 becomes:

	 PaE = 0.5 KaE γH 2	 [Eq. 9-5]

For the case kv = 0 this leads to the following constraint:

	 kh < tan (φ - β)	 [Eq. 9-6]

Following the approach proposed by Seed and Whitman (1970) [Ref. 105], AASHTO/FHWA recommend that the 
total dynamic earth force (PaE) be decomposed into two components representing the static earth force component 
(Ps) and the dynamic earth force increment due to seismic effects (ΔPdyn).  

Hence:

	 PaE = Ps + ΔPdyn	 [Eq. 9-7]

or

	 (1 + kv ) KaE = Ka + ΔKdyn	 [Eq. 9-8]

where:
Ka	 = 	 static active earth pressure coefficient, and
ΔKdyn	 =	 dynamic increment active earth pressured coefficient 
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For the case kv  = 0, Equation 9-8 simplifies to:

	 ΔKdyn = KaE - Ka	 [Eq. 9-9]

Recall from Sections 6 & 7, that the magnitude of the (static) active earth force Ps is calculated as: 
 

Ps = 0.5 Ka γH 2

where:

	

( )

( ) ( ) ( )
( ) ( )

2

2

2

cos

sin sin
cos cos 1

cos cos

aK
φ + ω

=
 φ + δ φ - b

ω ω - δ + 
ω - δ ω + b   	

[Eq. 5-3]

In the stability calculations to follow, both the horizontal and vertical components of active earth forces are used 
(see inset diagram in Figure 9-1).  Therefore, it is convenient in the stability calculations presented later in this 
section to use quantities KaH , KaV and ΔKdynH , ΔKdynV representing the horizontal and vertical components of earth 
pressure coefficients.  

Hence:

for the horizontal components 

	 KaH = Ka cos (δ - ω)	 [Eq. 9-10]

	 KaEH = KaE cos (δ - ω)	 [Eq. 9-11]

	 ΔKdynH  = ΔKdyn cos (δ - ω)	 [Eq. 9-12]

for the vertical components:

	 KaV = Ka sin (δ - ω)	 [Eq. 9-13]

	 KaEV = KaE sin (δ - ω)	 [Eq. 9-14]

	 ΔKdynV  = ΔKdyn sin (δ - ω)	 [Eq. 9-15]

From these active earth coefficients, the total horizontal and vertical dynamic earth forces and the dynamic earth 
force increments can be calculated. The amount of the dynamic earth force increment applied varies with the type 
of failure mode being analyzed. Both the value of KaE and the portion of the dynamic load ΔPdyn applied vary 
with the type of wall and type of analysis. Per standard convention, only half the dynamic earth force increment 
is applied when calculating external seismic earth forces. For internal overstress, pullout and facial connection 
strength analyses for reinforced walls, the full ΔPdyn, per Equation 9-7, is applied. Later sections provide specific 
forms of Equations 9-10 through 9-21 for each type of analysis.

The horizontal components of static earth force (PsH) and dynamic earth force increment (ΔPdynH) and total dynamic 
earth force (PaEH) are:

	 PsH = 0.5 KaH γH 2	 [Eq. 9-16]

	 PaEH = 0.5 KaEH γH 2 = PsH + ΔPdynH	 [Eq. 9-17]

	 ΔPdynH = 0.5 ΔKdynH γH 2 = PaEH - PsH	 [Eq. 9-18]



Seismic Design of Segmental Retaining Wall Design	 125

Figure 9-2: Earth Pressure Distributions Due to Self-Weight (Internal Analysis Case)
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and, similarly,  the vertical components are:

	 PsV = 0.5 KaV γH 2	 [Eq. 9-19]

	 PaEV = 0.5 KaEV γH 2 = PsV + ΔPdynV	 [Eq. 9-20]

	 ΔPdynV = 0.5 ΔKdynV γH 2 = PaEV - PsV	 [Eq. 9-21]

Section 9.3:  Distribution of Sesimic Earth Pressures

The dynamic earth pressure distributions illustrated in Figure 9-2 are used for external, internal and facing stability 
analyses of conventional and geosynthetic reinforced segmental retaining walls. Note that the dynamic earth force 
increment of the total seismic earth forces is uniformly distributed and acts at half the height of the wall [Ref. 68]. 
As shown in Figure 9-2c, the normalized point of application for the resultant of the total seismic earth force (PaE) 
varies over the range 0.33 < m < 0.67 depending on the magnitude of  ΔKdyn. As stated in Section 9.2, only half the 
dynamic earth force increment shown in Figure 9-2b is applied in external analyses. While the magnitude of the 
dynamic force increment will vary with type of analysis, it always acts at half the wall height being analyzed, as 
shown in Figure 9-2b (example shown is internal case). The wall height (H or Hext) used to calculate the resultant 
location will vary with type of wall and type of analysis.

Section 9.4:  Seismic Acceleration Coefficients

The seismic methodology described herein uses the AASHTO/FHWA approach for the selection of seismic acceleration 
coefficient values.   Because for most earthquakes the horizontal acceleration components are considerably greater 
than the vertical acceleration components, it seems reasonable to conclude that in such cases the influence of the 
vertical acceleration coefficient (kv) can be neglected for practical purposes (Seed and Whitman (1970) [Ref. 105], 
Wolfe et al. (1978) [Ref. 106], and Bathurst and Cai (1995) [Ref. 107]).  Nevertheless, engineering judgment must 
be applied in the selection of vertical and horizontal seismic coefficients based on experience, state of practice, and 
actual project site conditions.  Considerations of vertical acceleration are beyond the scope of this manual.
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For the horizontal acceleration coefficient in this manual, a displacement method approach is considered, which 
explicitly incorporates horizontal wall movement in the stability analysis.  

For internal and facial analysis of a reinforced wall (tensile overstress, pullout and connection strength calculations), 
the horizontal acceleration coefficient (khint) used is based on AASHTO/FHWA guidelines.  Specifically, khint is 
related to A and dseismic as follows:

	 ( )1.45hintk A A= - 	 [Eq. 9-22]

where:
A	 =	 Specified horizontal peak ground acceleration express as a fraction of the gravitational constant g.  

The site-specific values of A represent a 90% probability of that value not being exceeded in 50 years.   
Values for A are published under AASHTO (2002) [Ref. 36].

A is limited to less than 0.45g in Equation 9-22. Where A is greater than 0.45g, use khint = A.

dseismic	 =	 the lateral deflection that the retaining wall can be designed to withstand during a seismic event.

An estimate of the magnitude of the permanent base deformation that may be anticipated for these structures is 
10A in. (254A mm).  For example, for a peak acceleration of 0.29g, a gravity structure must be able to tolerate 
approximately 3 in. (76 mm) of lateral movement.  Conversely, given an acceptable permanent deformation criterion 
for a SRW structure, a limiting value of A can be determined.

For external analysis (base sliding and overturning calculations), the horizontal acceleration coefficient (khhext ) used 
in this document is also based on AASHTO guidelines.  Specifically, khext is related to A and dseismic as follows:

	 2hext
Ak =

	
[Eq. 9-23]

If displacement analysis is considered,

	
( )

0.25

0.74 in incheshext
seismic

Ak A
d

 
=  

  	
[Eq. 9-24]

Section 9.5:  Inertial Forces

In addition to static and dynamic increment earth forces, the inertial forces caused by the wall itself contribute to the 
total loading on a wall in a seismic event. Generally, the inertial forces are determined by applying the horizontal 
seismic coefficient (kh ) to the weight of the wall system being analyzed. For conventional walls, and for internal 
and facial analysis of reinforced walls, inertial forces are due to the weight of the wall facing units. For external and 
internal sliding analysis of reinforced walls, the weight creating inertial forces includes both the wall facing units 
and a reduced-width portion of the reinforced soil mass and slope above are used.

Section 9.6:  Surcharge Loads

Live loads acting at the top of the soil surface behind the facing column can be ignored for earthquake analysis given 
their transient nature.  For dead loads, this methodology only considers the static portion of earth forces due to dead 
loads, not the dynamic increment earth forces or inertial forces such surcharges may exert. No closed form solutions 
are available to consider explicitly the influence of a uniformly distributed surcharge pressure as is the case for static 
load environments. Thus accurate analysis of the dynamic influence of a dead load surcharge is beyond the scope of 
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this manual. Accordingly, design professionals should recognize this when considering placement or evaluation of 
significant dead loads on a retaining wall in seismically active regions.   A possible strategy to analyze a uniformly 
distributed surcharge load is to design the wall for an increased height equal to q/γ where q is the uniformly distributed 
surcharge pressure and γ is the unit weight of the reinforced or retained soil (whichever value is larger).

Section 9.7:  Conventional Segmental Retaining Walls

Conventional gravity walls for seismic should be evaluated for the same failure modes as the static analysis: sliding, 
overturning, internal sliding, and geotechnical concerns as outlined Section 6.4 and 6.5. For the seismic analysis, the 
resisting forces are the same as static analysis in Section 6, but with the addition of the any resisting forces due to the 
vertical component of the dynamic earth force increment. Driving forces are increased over static loads by the inertial 
force due to the weight of the wall and the dynamic earth force increment (ΔPdyn).  Also, both driving and resisting 
static forces for seismic analysis ignore the effects of live loads present for conventional static analysis in Section 6.

The seismic active earth coefficient for conventional walls is:
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[Eq.9-25]

where,

	 ( )tanext hexta kθ = 	 [Eq. 9-26]

and the other remaining terms are defined in Section 6.4.1

9.7.1:  External Stability

The total seismic forces used for external analysis include the static earth forces (excluding live loads), the inertial 
force due to the wall units, and the dynamic earth force increment as shown in Figure 9-3. The resisting forces are 

Figure 9-3: Forces and Geometry for External Stability Analysis of Conventional SRWs with Seismic Loading
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the weight of the wall units and vertical component of the static and dynamic increment earth force.  As explained 
in Section 9.2, only one-half of the dynamic earth force is applied for external analyses.

The specific form of the general Equations 9-10 through 9-21, for external analysis of conventional walls, using the 
above KaEcon  applied over the height H  are:

Horizontal Components

	 ( )cosaEH aEcon cK K= δ - ω 	 [Eq. 9-27]

	 ( ) ( )( )cos cosdynH aEcon acon c dyn cK K K K∆ = - δ - ω = ∆ δ - ω 	 [Eq. 9-28]

	
20.5aEH aEHcon rP K H= γ 	 [Eq. 9-29]

	
20.5dynH dynH r aEH sHP K H P P∆ = ∆ γ = - 	 [Eq. 9-30]

As explained in Section 9.2, only one-half of the dynamic earth force is applied for external analyses.  From this, 
the total horizontal component of dynamic earth force for external conventional analysis PaEHcon, is:

	 0.5aEHcon sH qdH dynHP P P P= + + ∆ 	 [Eq. 9-31]

Vertical Components

	 ( )sinaEV aEcon cK K= δ - ω 	
[Eq. 9-32]

	 ( ) ( )( )sin sindynV aEcon acon c dyn cK K K K∆ = - δ - ω = ∆ δ - ω 	
[Eq. 9-33]

	
20.5aEV aEVcon rP K H= γ 	

[Eq. 9-34]	
	

	
20.5dynV dynV r aEV sVP K H P P∆ = ∆ γ = - 	

[Eq. 9-35]

The static terms, Kacon , PsH , PqdH , PsV ,  and PqdV ,  in the above equations are calculated per Equations 6-1 to 6-16 in 
static Section 6.4.1.

9.7.1.1:  Base Sliding  (Refer to Section 6.4.3)

Seismic sliding resistance (Rscdyn) is the static resistance (Rsc) plus the effect of the vertical component of dynamic 
earth force:

	
0.5 tan ( 0.5 ) tanscdyn sc b dynV b W sV qdV dynVR R P W P P P= + µ ∆ φ = µ + + + ∆ φ

	 [Eq. 9-36]

where Rsc is calculated using Equation 6-21.

The driving forces for seismic sliding are the horizontal earth forces and inertial wall load.

The factor of safety against base sliding (FSslseismic) at the bottom of the lowermost facing unit can be expressed as:



Seismic Design of Segmental Retaining Wall Design	 129

	 0.5
scdyn

slseismic
sH qdH dynH hext w

R
FS

P P P k W
=

+ + ∆ + 	
[Eq. 9-37]

here Ww is calculated using 6-20.

The calculated value of FSslseismic should not be less than 1.1 (Table 5-2).

9.7.1.2 Base Overturning (Refer to Section 6.4.4)

The resisting moment in seismic is similar to the static moment Mr but includes vertical component of the dynamic 
earth force increment, as follows:
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[Eq. 9-38]

where static Mr  is calculated using Equation 6-23 and Xw the horizontal moment arm of the wall unit weight, 
Equation 6-24.

The seismic overturning moment is calculated:

	
0.5

2 3 2 2Oseismic hext w sH qdH dynH
H H H HM k W P P P       = + + + ∆       

        	
[Eq. 9-39]

The factor of safety against base sliding (FSotseismic) at the bottom of the lowermost facing unit can be expressed as:
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otseismic

Oseismic

MFS
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=
	

[Eq. 9-40]

The calculated value of FSotseismic should not be less than 1.1 (Table 5-2).

9.7.1.3:  Bearing Pressure (Refer to Section 6.4.5)

The applied bearing stress at the base of the leveling pad is calculated as:

	

[ 0.5 ]W sV qV dynV
acseismic

c

W P P P
Q

B
+ + + ∆

=
′ 	

[Eq. 9-41]

where,

	 2c u lp seismicB W h e′ = + - 	 [Eq. 9-42]

	

0.5
2 3 2 2hext w sH qdH dynH w w

seismic
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H H H Hk W P P P W e
e
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        + + + ∆ -                =
	

[Eq. 9-43]
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9.7.2:  Internal Stability

9.7.2.1 Internal Sliding (Refer to Section 6.5)
The factor of safety against internal sliding (FSscseismic(z)) at the interface between two facing units located at depth z 
below the crest of the facing column can be expressed as:

	
( )

( )

( ) ( )

u z
scseismic z

hextaEHext z w z

V
FS

P k W
=

+ 	
[Eq. 9-44]

The horizontal component of the external total seismic earth force (PaEHext(z) ) acting over the depth z, taken at the 
back of the facing column at each unit height increment is calculated using the following expression:

	 ( ) ( ) ( )0.5aEHext z sH z dynH zP P P= + ∆ 	 [Eq. 9-45]

Note that the total height of the facing column above the sliding surface is used in this calculation. While this is an 
internal analysis, the load is calculated in the same manner as an external analysis (just over a shorter height–see 
Section 6.5) so only half the dynamic load is applied.

Quantity Vu(z) is the peak interface shear capacity at the internal sliding interface at depth z and is calculated as 
follows:

	 ( ) ( ) tanu uu z w zV a W= + λ 	 [Eq. 9-46]

The calculated value of FSscseismic(z) should not be less than 1.1 (Table 5-2).

Section 9.8:  Geosynthetic Reinforced Segmental Retaining Walls

Reinforced SRWs are evaluated for the same failure modes as static analysis: external, internal, facing, and geotechnical 
concerns, as outlined in Sections 7.4, 7.5, 7.6 and 12. Seismic driving forces are the static forces, the inertial forces, and 
the dynamic earth forces (ΔPdyn). Seismic resisting forces are the same as static resisting forces presented in Section 
7, with the addition of the resistance from the vertical component of the dynamic earth force. Also, both driving and 
resisting static forces for seismic analysis ignore the effects of live loads present in the static analysis of Section 7.

9.8.1:  External Stability

Driving forces for external seismic analysis are the static loads plus the inertial forces (PIR) and one-half the dynamic 
earth forces (ΔPdyn).  The inertial forces used for external analysis of reinforced walls are those due to the wall face 
units and to a reduced width of the reinforced soil mass, 0.5H.  The simplified geometry and body forces illustrated 
in Figure 9-3 are used in the external stability calculations to follow.  Here:

Wrs	 =	 total weight of the reinforced zone extending from the face of the facing column to length Lmin = 0.5H 
beyond the face of the wall and having height H, and

Wrβ	  =	 contribution of the wedge of soil in the slope above the crest of the wall (above height H)

The seismic active earth force coefficient for external analysis is:

	

2

2

2

cos ( )

sin( )sin( )cos cos cos( ) 1
cos( )cos( )

r ext
aEext

r e r ext ext
ext e ext

e ext ext

K φ + ω - θ
=

 φ + δ φ - b - θ
θ ω δ - ω + θ + δ - ω + θ ω + b  	

[Eq. 9-47]
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where,

	 tanext hexta kθ = 	 [Eq. 9-48]

and the other remaining terms βext , ϕr and δe are defined in static Section 7.4.1.

9.8.1.1:  External Earth Forces and Locations

For the reinforced wall external analysis case, the specific form of the general equations of earth forces, Equations 
9-10 through 9-21, use the above KaEext over an applied height Hext . The terms Hext , Kaext , PsH  , PqdH  , PsV , and PqdV  in 
these following equations are calculated per static Sections 7.4.1.1 and 7.4.1.2.

Horizontal Components

	 ( )cosaEHext aEext eK K= δ - ω 	 [Eq. 9-49]

	 ( ) ( )( )cos cosdynH aEext aext e dynK K K K∆ = - δ - ω = ∆ δ - ω 	 [Eq. 9-50]

	
20.5aEH aEHext extP K H= γ 	 [Eq. 9-51]

	
20.5dynH dynH ext aEH sHP K H P P∆ = ∆ γ = - 	 [Eq. 9-52]

From this, the horizontal component of the total seismic earth forces for external analysis (PaEHext) can be calculated 
from the static earth forces due to soil and dead load surcharge (the live load effect is ignored) and one-half of the 
dynamic earth force as follows:

	 0.5aEHext sH qdH dynHP P P P= + + ∆ 	 [Eq. 9-53]

The horizontal components of the forces PsH and PqdH act at vertical distances of 1/3 Hext and 1/2 Hext as defined by 
Ys and Yq in Equations 7-18 and 7-19 as shown in Figures 7-7 and 9-4.  The dynamic earth force (ΔPdynH ) which is 
considered uniform like a surcharge, also acts at Yq.

Vertical Components

	 ( )sinaEVext aEext eK K= δ - ω 	 [Eq. 9-54]

	 ( ) ( )( )sin sindynV aEext aext e dynK K K K∆ = - δ - ω = ∆ δ - ω 	 [Eq. 9-55]

	
20.5aEV aEVext extP K H= γ 	 [Eq. 9-56]

	
20.5dynV dynv ext aEV sVP K H P P∆ = ∆ γ = - 	 [Eq. 9-57]

The total vertical component of seismic earth force for external analysis PaEVext is:	

	 0.5aEVext sV qdV dynVP P P P= + + ∆ 	 [Eq. 9-58]

The resultant of the static vertical components of the forces PsV and PqdV  act at horizontal distances slightly greater 
than L if the wall is battered, defined as Xs and Xq in Equations 7-24 and 7-25 and shown in Figure 7-7 . The resultant 
of the dynamic earth force (ΔPdynV ) acts at Xq also.
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9.8.1.2:  Inertial Forces and Locations

The quantity PIR in Figure 9-4 denotes the horizontal inertial force due to the reinforced mass used in external stability 
calculations.  Different strategies have been proposed in North America to compute PIR < khWr to ensure reasonable 
designs (Bathurst and Alfaro 1996 [Ref. 108]).  The justification is based on the expectation that horizontal inertial 
forces induced in the reinforced mass and the earth forces due to the retained (backfill) soil zone will not reach peak 
values at the same time during a seismic event.

The method adopted here uses the AASHTO/FHWA approach and assumes that the horizontal inertial force (PIR) is 
due to an equivalent mass comprising the facing column and also a portion of the reinforced soil zone extending to 
a distance 0.5H beyond the face of the wall.  The general approach is illustrated in Figure 9-4 and the total inertial 
load for external analysis (PIR) is calculated as follows. 

	 ( )IR hext w iP k W W Wb′ ′= + + 	 [Eq. 9-59]

The inertial forces of the wall facing units Ww and the reduced-width reinforced soil zone iW ′ act at half the wall 
height H. 

The weight of reduced-width reinforced mass behind the wall face, iW ′ is:

	 (0.5 )i u iW H W H′= - γ 	 [Eq. 9-60]

Figure 9-4: Geometry and Forces used to Calculate External Stability in Reinforced SRWs
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Wb′ the weight of top slope above the reduced-width reinforced inertial mass varies with the geometry at the top of 
the wall. The height of a slope that is continuous to the back of the reduced-width reinforced mass ( h′ ) must be 
figured to determine cases. The equivalents to back of the reinforced zone, L′′  and h (Equations 7-3 and 7-5) are at 
back of the reduced-width zone, 0.5HL′′ and h′  respectively, as shown on Figure 9-5 and are calculated as follows:

	
0.5

(0.5 ) tan tan
1 tan tan

u
H

H WL - b ω′′ =
- b ω 	

[Eq. 9-61]

	 0.5
(0.5 ) tan

Huh H W L′ ′′= - + b
	

[Eq. 9-62]

For slope Case A: hs < h′  (slope breaks before back of 0.5H wide mass)

	 1 2 3r r rW W W Wb b b b′ ′= + + 	 [Eq. 9-63]

Figure 9-5:  Top of Wall Geometry At 0.5h Distance from Back of Wall
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where the weight of the triangular portions of the reduced-width top slope, Wrβ1 and Wrβ3, are the same as for the 
full-width reinforced slope, defined static Section 7 in Equation 7-31A1 and Equation 7-31A3.  The weight of center 
portion of the reduced-width top slope, rW ′ β 2 is a modification of the full-width static term Wrβ2 (Equation 7-31A2).  

rW ′ β 2 is calculated as follows:

	 2 (0.5 )r u offset s iW H W hb′  = - - b γ  	 [Eq. 9-64]

For static analysis, only the horizontal resisting moment arms of soil weights were needed. But in this seismic 
analysis, these soil weights (of the reduced-width reinforced soil zone) will contribute to the driving inertial forces. 
So the vertical distances, from the bottom of the wall, at which these weights act is needed to determine driving 
moments. In this Slope Case A, each of these portions of inertial force top slope weight, Wrβ1, rW ′ β 2 and Wrβ3, act at 
the following distances respectively:

	
1 3

shY Hb = +
	

[Eq. 9-65]

		

	
2 2

shY Hb′ = +
	

[Eq. 9-66]

	
3

2
3 sY H hb = +

	
[Eq. 9-67]

	 		
For Slope Case B: hs > h′  - broken slope crests beyond 0.5H wide mass or an infinite slope

	

(0.5 )
2

u
i

H W hWb

′-′ = γ
	

[Eq. 9-68]

For this Slope Case B, this slope weight inertial force, Wb′   acts at

	 3
hY Hb

′
′ = +

	
[Eq. 9-69]

9.8.1.3:  Base Sliding
	
The resistance to sliding in seismic Rswdyn parallels Equations 7-32A-C and is the combination of the static sliding 
resistance Rs and the resistance due to the vertical component of half the dynamic earth force increment. So for the 
calculations below the only new term compared to static equations is 0.5ΔPdynV :

If the reinforced (infill) soil controls:

	
( (0.5 )) tanswdyn ds d ri r sV qdV dynV iR C q L W W P P Pb b = + + + + + ∆ φ  	

[Eq. 9-70A]

If the gravel fill controls:

	
( (0.5 )) tanswdyn ds d ri r sV qdV dynV dR C q L W W P P Pb b = + + + + + ∆ φ  	

[Eq. 9-70B]

If the foundation soil controls:

	
[ ( ( (0.5 ))) tan ]swdyn ds f d ri r sV qdV dynV fR C c L q L W W P P Pb b= + + + + + + ∆ φ

	
[Eq. 9-70C]
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As stated in Section 7, the quantity Cds is the coefficient of direct sliding and cannot exceed unity.  For soil to soil 
interfaces the value for this parameter can be assumed to be equal to one.  For the case of a geosynthetic layer placed 
at the base of the reinforced soil zone, Cds < 1 may be appropriate.

The same restrictions on offset dead loads described in static Section apply for the above equations. Some, or all, of 
the contribution of dead loads to resisting forces may be removed depending on offset of the dead load, as shown 
in Equations 7-28 and 7-29.

The total driving seismic load for sliding is the combination of the external inertial forces (PIR) and total seismic 
earth forces for external analysis (PaEHext ).

The Factor of Safety against base sliding at the bottom of the reinforced mass can be expressed as:

	 (0.5 )
swdyn

slseismic
IR sH qdH dynH

R
FS

P P P P
=

+ + + ∆ 	
[Eq. 9-71]

The calculated value of FSslseismic should not be less than 1.1 (Table 5-2).

9.8.1.4:  Overturning

The resistance to overturning in seismic is Mrseismic is the combination of the static overturning resistance (Mr) and 
the resistance due to the vertical component of half the dynamic earth force increment:

The resisting moment is calculated as:

	
0.5 tan

2
ext

rseismic r dynV
HM M P L = + ∆ + ω   	

[Eq. 9-72]

where Mr  is the static resisting moment from Equation 7-34A and B and the horizontal moment arm for the dynamic 
force 0.5ΔPdynV :  can also be expressed as the term for the moment arm for vertical component of surcharge load, 
defined as Xq in Equation 7-25.

The same restrictions on offset dead loads described in static Section 7 apply for the above equations:  some, or all, 
of the contribution of dead loads to resisting forces may be removed depending on offset of the dead load, as shown 
in Equations 7-28 and 7-29.

The driving moment is calculated as:

	 0.5Oseismic sH s qdH q dynH q IR IRM P Y P Y P Y P h= + + ∆ + 	
[Eq. 9-73]

			 
The driving moment arms for static earth forces (Ys and Yq) are defined in Equations 7-18 and 7-19 and the dynamic 
earth force component acts at the same location as the surcharge.
		
The total inertial load (PIR) acts a moment arm (hIR) for all the components of the inertial weight: the wall face, the 
reduced-width reinforced mass, and the reduced-width top slope soil.  Depending on the slope case, the top slope 
soil can have several different moment arms, as described in Section 9.8.1.2, so the total driving moment due to the 
inertial top slope weight (Mβ) must be determined for proper case:

For slope case A: hs < h′  (broken slope crests before back of 0.5H reduced width mass)
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	 1 1 2 2 3 3r r rM W Y W Y W Yb b b b b b b′ ′= + + 	
[Eq. 9-74A]

For Slope Case B: hs < h′  (broken slope crests beyond 0.5H or an infinite slope)

	 M W Yb b b′ ′ ′= 	
[Eq. 9-74B]

The inertial slope weights and moment arms in Equation 9-74A and B are calculated per Equations 9-65 to 9-67 and 
9-69, respectively.

The driving moment arm for the inertial forces measured at the normalized resultant is:

	

2 2hext w hext i hext

IR
IR

H Hk W k W k M
h

P

b′ ′+ +
=

	
[Eq. 9-75]

				  
The factor of safety against overturning about the toe of the facing column can be expressed as the ratio of the 
resisting moment Mr and driving moment Mo:

	

rseismic
otseismic

oseismic

MFS
M

=
	

[Eq. 9-76]

The calculated value of FSotseismic should not be less than 1.1 (Table 5-2).

9.8.1.5:  Bearing Pressure

The Meyerhof bearing capacity approach for statically loaded geosynthetic reinforced SRW structures (Section 7) is 
modified here to include the additional base loading eccentricity developed by the external dynamic force increment.

Consistent with the method used in Section 7, the eccentricity term eseismic can be calculated with respect to the center 
of the base of the reinforced zone (i.e. at distance L/2 from the toe of the wall) as follows:

	
2 ( ) ( 0.5 )

rseismic oseismic
seismic

ri r d sV qdV dynV

M MLe
W W q L P P Pb b

-
= -

+ + + + + ∆
	

[Eq. 9-77]

Quantity Bseismic is the equivalent footing width at the base of the reinforced zone calculated as:

	 2seismic seismicB L e= - 	 [Eq. 9-78]

The applied bearing stress at the base of the reinforced zone is calculated as:

	

( ) ( 0.5 )ri r d sV qdV dynV
seismic

seismic

W W q L P P P
Q

B
b b+ + + + + ∆

=
	

[Eq. 9-79]

9.8.2:  Internal Stability

For internal analysis, seismic loads include an inertial force, acting horizontally, that is a function of both the 
mass of segmental wall units and active soil wedge.  For the purpose of this manual, the active soil wedge shall be 
determined based on Coulomb earth pressure theory.  The dynamic earth force increment and inertial forces are in 
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addition to the static force.  The orientation of the internal failure plane for seismic internal stability (active soil 
wedge) can be determined from Equation 7-50. 

tan( ) [tan( ) (tan( ) cot( )) (1 tan( ) cot( ))]
arc tan

1 tan( ) (tan( ) cot( ))
i int i int i int i i i

i i
i i int i

 = 
 - φ - b + φ - b × φ - b + φ + ω × + δ - ω × φ + ω

α + φ 
+ δ - ω × φ - b + φ + ω  

For internal stability analysis, the influence of ground acceleration on the orientation of the M-O failure plane is 
ignored.

The internal dynamic active earth pressure is defined as follows:

	

2
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int 2

2 int int
int int

int int

cos ( )

sin( )sin( )cos cos cos( ) 1
cos( )cos( )

i
aE

i i i
i

i

K φ + ω - θ
=

 φ + δ φ - b - θ
θ ω δ - ω + θ + δ - ω + θ ω + b  	

[Eq. 9-80]

The specific form of equation Equation 9-9, for internal analysis, horizontal components the dynamic portion of the 
earth pressure coefficient is:

	 int int int( )cos( )dynH aE a iK K K∆ = - δ - ω 	 [Eq. 9-81]

Where Kaint is static earth pressure coefficient from Equation 7-43.

Driving forces for internal seismic analysis are the static loads (excluding live load effects) plus the inertial forces 
and the dynamic earth forces ( ΔPdynH ) over the height of the wall at the face (H).  Note that unlike external analyses, 
the whole amount of ΔPdynH (not half) is applied. The inertial forces used for internal analysis are those due to the 
wall face units.

So the dynamic earth force increment (ΔPdynH) used for internal analysis is:

	
2

int0.5dynH dynH iP K H∆ = ∆ γ 	 [Eq. 9-82]

Total magnitude of this dynamic earth force increment is calculated from a triangular earth pressure, similar to static 
earth pressures from the soil. However, the dynamic earth force is distributed differently. For static earth forces 
from soils, the internal loads are applied as a proportion of the triangular earth pressure distribution, with larger soil 
forces lower in the wall. In contrast, the dynamic earth force is applied evenly over the height of the wall, similar to 
the distribution of earth forces from a surcharge load, as shown on Figure 9-6.

The amount of load on each geosynthetic layer is determined from the same contributory area Ac(n) for each 
geogynthetic layer that is used for static calculations, as described in Section 7.5.2. The total seismic applied tensile 
force on each layer of geosynthetic (Fi(n)) is the horizontal component of the static earth forces (excluding live 
loads), the inertial forces, and the horizontal component of the dynamic earth force increment figured over that 
geosynthetic’s contributory area. So for reinforcement layer n, the applied tensile force Fi(n) is,

	 ( ) ( ) ( ) ( )i n hint w n gstat n dyn nF k W F F= ∆ + + 	 [Eq. 9-83]

where:
Fgstat(n)	 =	 applied tensile force on the geosynthetic due static earth forces of from soil and dead load 

surcharge, (same as static force on grid Fg in Section 7 but without live load surcharge effects) 
over contributory area for layer n.
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	 ( ) ( )[ ] cos( )gstat n i n d aint c n iF D q K A= γ + δ - ω 	 [Eq. 9-84]

khint ΔWw(n)	 = 	 wall inertial force increment due to the mass of segmental wall units over the contributory area 
for layer n.

	 ( ) ( )w n c n u uW A W∆ = γ 	 [Eq. 9-85]

Figure 9-6: Geometry and Forces Used to Calculate Reinforcement Loads and Anchorage Capacity

dq

d3

β

gstat(3)F

Ac(4)

c(3)A

c(2)A

Ac(1)

D4

3D

2D

D1

H

ω
αi

(3)AC

E(4)

(3)E

E(2)

(1)E

σ = γ d  + q3 d

L    /2a(3)

a(3)L

L

Note:  F     , F     and F     are not shown, for clarity of F    .g(1) g(2) g(4) g(3)

dyn(3)F

w
(3

)
W ∆

hi
nt

k

Dynamic compoment
of reinforcement load

Static compoment
of reinforcement load

Wall inertial force
increment

w(n)W∆hintk gstat(n)F dyn(n)F

A = contributory area to determine force in reinforcement, 
D = depth to midpoint of contributory area, A
F = static component of force in reinforcement at layer n
F = dynamic component of force in reinforcement at layer n
d = average depth of overburden over reinforcement 

anchorage length, L
α = orientation of internal failure surface
E = elevation of layer n above reference datum
L = anchorage length of layer n
AC = anchorage capacity of layer n
H = height
q = dead load surcharge
q = live load surcharge
σ = horizontal pressure
ω = wall inclination

c(n)
n
gstat(n)

n

i

(n)
a(n)

n

d
l
h

c(n)

a(n)

dyn(n)



Seismic Design of Segmental Retaining Wall Design	 139

Wu	 =	 width of the segmental block unit.
γu	 =	 unit weight of the segmental block unit.
Ac(n)	 =	 the contributory area for any reinforcement elevation (Equations 7-54 to 7-57).
Fdyn(n)	 =	 dynamic earth force increment in the geosynthetic due to the dynamic earth force associated 

with the active wedge in the reinforced soil mass.  
		

	 ( ) ( )0.5dyn n dynHint c n iF K A H= ∆ γ 	 [Eq. 9-86]

(As stated above, the total dynamic earth  force (ΔPdynH) is distributed evenly over the height of the wall, so the load 
on each layer is that layers’s contributory area worth of ΔPdynH , uniformly distributed over the height of the wall.)

9.8.2.1	Tensile Overstress

The dynamic factor of safety against over-stressing of reinforcement layer n is given by:

	

( )
( )

( )

seismic n
toseismic n

i n

LTDS
FS

F
=

	
[Eq. 9-87]

A seismic event results in a short-term, nominally instantaneous load event.  As such, the standard of practice for 
geosynthetic reinforcement design under seismic design conditions is to not consider the effect of creep (RFcr) on 
the allowable design strength.

	 ( ) ( )seismic n n crLTDS LTDS RF= × 	 [Eq. 9-88]

The calculated value of FStoseismic(n) should not be less than 1.1 (Table 5-2).

9.8.2.2:  Pullout

The factor of safety against pullout failure is expressed as:

	

( )
( )

( )

n
poseismic n

i n

AC
FS

F
=

	
[Eq. 9-89]

where, from Section 7, Equation 7-63:

( ) ( ) ( )2 ( ) tann a n i n i d iAC L C d q= γ + φ

The calculated value of FSposeismic(n) should not be less than 1.1 (Table 5-2).

9.8.2.3:  Internal Sliding

While internal sliding is part of internal analysis, internal sliding parallels external sliding calculations, including 
applying one-half of the dynamic earth forces ΔPdyn. The seismic internal sliding potential should be evaluated at 
each reinforcement layer. 

As done in static analysis, the “external” load for seismic internal sliding is calculated over the height to the geogrid 
layer elevation (Hext – E(n)) (see Figure 9-7). Therefore the vertical and horizontal dynamic earth forces at each 
reinforcement layer ΔPdynH(n) and ΔPdynV(n) are calculated in a manner paralleling external dynamic earth forces:
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2

( ) ( )0.5 ( )dynH n dynH r ext nP K H E∆ = ∆ γ - 	 [Eq. 9-90]

	
2

( ) ( )0.5 ( )dynV n dynV r ext nP K H E∆ = ∆ γ - 	 [Eq. 9-91]

Resistance to seismic internal sliding (  swdynR′
 ) parallels the external seismic sliding Rswdyn, Equation 9-70A-C, but 

calculates each of the variables at the elevation of the nth layer, as done in static internal sliding.

	 ( ) ( ) ( ) ( ) ( )(0.5 ) tanswdyn ds r n d sV n qdV n dynV n r u nR C W W q L P P P Vb b
 ′ ′  = + + + + + ∆ φ +   	 [Eq. 9-92]

where

( )r nW ′ , Wβ , qd Lβ , PsV(n) , PqdV(n), and Vu(n) are the same static vertical loads at layer n as presented in Section 7.5.5.2 
and ΔPdynV(n)  at layer n is defined above in Equation 9-91.

The driving forces at each layer for seismic internal sliding include the static loads (excluding live load) PsH(n) and 
(PqdH(n)) defined in Section 7.5.5.1, one-half the horizontal dynamic earth force increment (ΔPdynH(n))  and the inertial 
forces from the wall system.

The weights used in the inertial calculation include the reduced-width reinforced zone (Δ ( )i nW ′ ) and the slope above 
this (W ′

β ) and wall face unit weights (ΔWw(n)) over the height of the reinforcement layer n.  So the inertial force for 
internal sliding (ΔPIR(n)) is calculated:

	 ( ) ( ) ( )( )IR n hext w n i nP k W W Wb′ ′∆ = ∆ + ∆ + 	 [Eq. 9-93]

Figure 9-7:  Geometry and Forces used to Calculate Internal Sliding of Reinforcement Layers
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where,

	 ( ) ( )( )w n u ext n uW H E W∆ = γ - 	 [Eq. 9-94]

	 ( )(0.5 )( )i u ext n iW H W H E′∆ = - - γ 	 [Eq. 9-95]

and W ′
β  varies with top slope geometry and is calculated per Equations 9-63 to 9-68 in Section 9.8.1.2.

The factor of safety against internal sliding along a reinforcement layer located at a given depth below the crest of 
the wall can be expressed as:

	

_ ( )
( )

( ) ( ) ( ) ( )0.5
s seismic n

slseismic n
sH n qdH n dynH n IR n

R
FS

P P P P
′

=
+ + ∆ + ∆ 	

[Eq. 9-96]

The calculated value of FSslseismic(n) should not be less than 1.1 (Table 5-2).
	

9.8.2.4	Connection Capacity

The dynamic factor of safety against over-stressing of reinforcement layer n is given by:

	

( )
( )

( )

conn n
conseismic n

i n

T
FS

F
=

	
[Eq. 9-97]

The calculated value of FSconseismic(n)  should not be less than 1.1 (Table 5-2).

9.8.2.5:  Crest Toppling 

Local (crest) toppling refers to the overturning of the top unreinforced portion of the facing column.  The 
critical portion of the facing column is taken as the height of wall starting at the elevation of the topmost layer 
of reinforcement.  The calculations presented in parallel external stability calculations for overturning of an 
unreinfroced conventional wall Section 9.7 done at each unit height increment, to a height of depth z to the unit 
interface, from the top of wall face.

The dynamic earth force increments at each unit height are calculated in manner similar to conventional wall 
Equations 9-30 and 9-35 but the internal values for ΔKdyn and γ are used:

	
2

( ) 0.5dynH z dynH iP K z∆ = ∆ γ 	 [Eq. 9-98]

	
2

( ) 0.5dynV z dynV iP K z∆ = ∆ γ 	 [Eq. 9-99]
	
The static terms PsH(z) , PsV(z) , PqdH(z) and PqdV(z) are calculated per Equations 7-82, 7-84 and 7-86.

The resisting moment from the wall units and the vertical components of static and dynamic earth forces as calculated 
at each unit height:

	
( ) ( ) ( ) ( ) ( ) ( )tan ( 0.5 ) tan

3 2u urseismic z w z w z sV z qdV z dynV z
z zM W X P W P P W

       = + + ω + + ∆ + ω       
        	

[Eq. 9-100]
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where Xw(z) is the horizontal distance from the toe of the internal sliding surface to the center of gravity of the facing 
column at depth z calculated per Equation 7-90, Ww(z) is the weight of unit above z. 

The overturning (driving) moment is due to inertial force of the wall units, and horizontal static and dynamic earth 
forces. Because the calculations are mirroring external unreinforced wall analysis, one-half of the dynamic earth 
force is applied. The overturning moment is calculated as:

	
( ) ( ) ( ) ( ) ( )int 0.5

2 3 2 2hoseismic z w z sH z qdH z dynH z
z z z zM k W P P P       = + + + ∆       

        	
[Eq. 9-101]

The factor of safety FSctseismic(z) against crest toppling about the toe of the facing column at depth z below the crest of 
the wall can be expressed as the ratio of the resisting moment Mr(z)seismic and driving moment Moseismic(z):

	
( )

( )

( )

r seismic z
ctseismic z

oseismic z

M
FS

M
=

	
[Eq. 9-102]

The calculated value of FSctseismic(z) should not be less than 1.1 (Table 5-2).

9.8.3:  Internal Compound Stability (see Section 8)

The consideration of seismic load for internal compound stability calculations is based on the addition of an inertial 
force (khW) associated with the mass of the soil slice (see Figure 9-8). 

The incorporation of an additional dynamic load or inertial force in Equation 8-6 is calculated as follows:

	

( ) tan ( cos )
cos (sin tan ) /

( )sin

available available

i
h

W P T F
FSFS dW P k W

R

+ φ
+ α +

α + α φ=
+ α +

∑ ∑

∑ ∑
	

[Eq. 9-103]

where kh is defined in Equation 9-23.

The sketch in Figure 9-9 illustrates the force components as well as their respective moment arms.  Note that for the 
dynamic component, the moment arm is the perpendicular distance to the center of the slip circle, whereas the other 
components’ moment arm is the radius of the slip circle.

Note that the summation i
h

dk W
R∑ is performed for all slices.

Comment:  Version 4.0 of the SRWall Software carries out Internal Compound Stability (ICS) as described above.  
The terminology used in the reports from the software however, does not match the one presented above.  The 
following relationship should be helpful in matching the terms used in the software:

, 1.0.

i
h

i

dDynF in the software refers to k W
R

dNote that in the software the term is conservatively equal to
R

∑ ∑

The calculated value of FSICS should not be less than 1.1 (Table 5-2).
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Figure 9-8:  Soil Slice Showing Dynamic Load
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Figure 9-9:  Components of ICS Analysis Including Dynamic Load
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Section 9.9:  Example Calculations 

An example calculation using this design methodology to analyze a typical design problem for a generic reinforced 
soil SRW is presented.  The example calculation serves to illustrate many of the consequences of certain design 
property assumptions and important intermediate calculation steps.
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SECTION 10
DRAINAGE DESIGN AND WATER CONSIDERATIONS

Water can increase loads on a retaining wall, be a source of scour or erosion, or decrease stability of soils surrounding 
a SRW. As a general design approach, it is considered preferable, whenever possible, to keep water away from 
retaining walls and provide adequate drainage structures in and around walls to avoid build-up of hydrostatic 
pressure on walls. This section presents an overview of  wall drainage issues as well as internal wall drainage design 
guidelines for SRW engineers. Section 11 and Section 12 present design guidelines for drainage and water issues, 
involving SRWs, for site civil engineers and geotechnical engineers, respectively. 

Section 10.1:  Overview of Water Considerations

A brief overview of some of the effects of water on walls that should be considered by design professionals are:
●● Surface Water—Improper collection and flow of surface drainage can direct excessive amounts of water 

towards a SRW and cause erosion or over-loading of the wall. Section 11 discusses considerations for site 
civil engineer to minimize surface water issues around a SRW.

●● Groundwater/Subsurface Water—Groundwater  can  weaken  foundations  soils supporting a wall and 
can increase external loads on a wall. See discussion later in this Section and in Section 12 for subsurface 
water considerations for the SRW design engineer and geotechnical engineer.

●● Water Bodies in Front of Walls—SRWs along a body of water such as a lake shoreline, river or stream 
channel, or detention/retention ponds present several special considerations including rapid draw down 
pressures, scour, fines migration, foundation concerns, and ice.  See later discussion in the Section 10.5 as 
well as Sections 11 and 12 for discussion of wall design and civil design for around SRWs when standing 
water will be present in front of a wall and geotechnical concerns for walls with submerged foundations.

●● Drainage within and Around Walls—Whenever practical, SRWs should be designed with sufficient 
drainage materials, such as gravel fill, drainage pipe, and filter fabric, in and around the walls, to avoid 
hydrostatic pressures on the SRW as discussed later in this section.

Potential sources of subsurface water are groundwater, surface water infiltration, and a body of water in front of 
the wall as illustrated in Figure 10-1.  Groundwater may be present at an elevation above the bottom of the wall 
and would flow to the SRW from an excavation backcut; or it may be present beneath the bottom of the SRW.  A 
groundwater surface beneath an SRW may rise into the SRW structure, depending on the hydrogeology of the site.  
Surface water, due to direct precipitation above the wall, or surface drainage directed towards wall, may infiltrate 
into the SRW from above. A river, channel, stream, lake, or pond can also introduce water from the front of the wall 
through the mortarless wall face.

It is preferable to engineer a retaining wall with proper drainage in and around the wall to avoid water reaching 
the wall and to avoid hydrostatic pressure building up behind or within the wall rather than allowing water loads 
and designing for the hydrostatic pressure and erosion energy of the water. To this end, Section 10.3 and Section 
11 discusses processes to mitigate surface drainage on a SRW. However, even with the best water mitigation plans 
around a wall, some water may reach the wall system due to some of the following: a body of water in front of the 
wall, a high groundwater table at the wall location, or some surface infiltration from precipitation directly above the 
wall. Proper design of drainage systems in and directly around a wall is needed to ensure such water reaching a wall 
does not build-up into hydrostatic pressures on the wall.

Section 10.2:  SRW Drainage Components

The basic drainage features were introduced in Section 2.3.  In the following subsections, these features will be 
described in detail.
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10.2.1 Gravel Fill (Drainage Aggregate) 

Engineered gravel fill (referred to as drainage aggregate in previous editions of this manual) (Figure 10-1) is an 
important part of a properly designed SRW.  Gravel fill is generally open graded gravel (i.e., GP). In many cases 
the gravel fill (drainage aggregate) is separated from the reinforced fill soils by a geotextile and contains a drainage 
pipe to direct accumulated water away from the structure. The minimum recommended thickness of the gravel fill 
placed behind SRW units is 12 in. (305 mm).  A properly designed gravel system directly behind the SRW units will 
do the following: 

●● Facilitates compaction of fill directly behind the SRW units
●● Prevents the build up of hydrostatic pressures behind the face of the wall. 
●● Prevents retained soils from washing through the face of the wall.

The National Concrete Masonry Association recommends the use of gravel fill behind the SRW units, except when 
free draining (less than 5% passing the 200 sieve) reinforced fill is used to construct the wall. In this case, a 
geotextile may be necessary to prevent soil particles from passing through the wall face. Even if the wall backfill 
is a free draining material, the cores in the SRW units and the annulus between the units must be filled with gravel. 
The design of the gravel fill is discussed in detail in Section 10.4.1. 

10.2.2:  Drain Pipe 

A drain (collector) pipe (Figures 10-1 to 10-4) is often included in the internal drainage system for an SRW. The 
function of this pipe is to remove water from the gravel fill so that water does not accumulate in the gravel and 

Figure 10-1:  Gravel Fill (Drainage Aggregate)
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increase the internal forces on the SRW. If the anticipated rate of infiltration of water into the gravel is greater than the 
rate that the water may dissipate through the face of the wall, then a drain pipe with weep holes and frequent outlet 
pipes is generally recommended. The design of the drainage system may include both solid and perforated pipe. The 
solid pipe is used when transporting water and the perforated pipe is used when collecting and transporting water. 
	

10.2.3 Filters (Geotextile or Gravel)

A properly designed and constructed SRW structure should minimize the amount of water that drains through the 
soil and moves into the gravel fill behind the wall.  When provisions have been built into the design to only allow 

Figure 10-2:  Wall Face Drain–Case 1
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incidental water to migrate to the gravel fill zone, a geotextile filter is not required and generally not needed.  For 
SRW designs that do not fit this description, a filter may be needed to minimize fines migration and soil piping while 
still allowing unimpeded water flow. A shoreline wall subject to a regularly fluctuating water level in front of the 
wall is an example of a wall that might need such a filter. The gravel fill may be designed to act as a filter for the 
reinforced fill or a geotextile filter may be specified. The geotextile should allow for a high rate of drainage through 
the geotextile. The design of soil and geotextile filters are covered in Section 10.4.1 and 10.4.2.

Figure 10-3:  Wall Face and Blanket Drain–Case 2
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10.2.4:  Blanket Drain

A blanket drain below the reinforced soil zone (Figures 10-3 and 10-4) is recommended when the groundwater 
table is expected to rise to, or remains just below, the leveling pad elevation during the design life of the structure. 
The blanket is typically open-graded gravel fill wrapped in a geotextile. The design considerations that should be 
including when incorporating a blanket drain into an SRW are covered in detail in Section 10.4.2. 

Figure 10-4:  Complete Drainage System–Case 3

Groundwater Conditions for Case 3
1. Groundwater table near bottom of wall (   ) or possible lateral 

(horizontal) flow into reinforced (infill) soil and retained soil on a 
seasonal basis (   ).

2. Lateral (horizontal) groundwater flow into reinforced soil will occur.
3. This complete drainage system provides maximum protection for 

SRWs and should be utilized when there is uncertainty as to the actual 
site groundwater conditions.

Grade to prevent 
surface ponding12 in.

(305 mm)Segmental 
unit

See 
optional 
detail "A" 
below

H

Gravel fill

Retained 
soil zone

Geosynthetic 
reinforcement

Reinforced 
(infill) 

soil zone

Blanket drain *
6 in. (152 mm) min.

Main discharge pipe 
gravity flow to outlet

Geotextile 
drainage filter 
(if required)

* Chimney drain and/or blanket drain 
may be replaced with an appropriate 
geocomposite at the discretion of the 
wall design engineer.

Geotextile
Uniform graded gravel (GP)

Slow draining well graded sand and 
gravel (SW, SM, GW and GM)

Optional Detail "A"

0.7H

Chimney drain* (extend top 
0.7H  or maximum elev. of 
groundwater rise)

Discharge pipe (gravity flow)

Chimney drain to 0.7H  or 
maximum groundwater rise



150� Design Manual for Segmental Retaining Walls 3rd Edition 

10.2.5:  Chimney Drain

When the groundwater table is expected to rise above the bottom of the leveling pad, or when perched water is 
present in a cut bank behind the reinforcement, a chimney drain should be included as part of the drainage system, 
(Figure 10-4). The chimney drain should extend to an elevation in excess of the maximum anticipated groundwater 
elevation behind the structure or approximately 0.7H, whichever is greater.  A prefabricated drainage composite 
may be utilized as the chimney drain.  Details on the design and specification of chimney drains may be found in 
Section 10.4.

The drainage systems described above must have adequate thickness and permeability to carry anticipated flows and 
be constructed with an appropriate gradient.  All drainage pipes should have adequate flow capacity and gradient 
to direct intercepted flows by gravity to locations beyond the SRW structure. In most cases the gravel fill should be 
encapsulated by an appropriately selected geotextile filter to prevent ingress of finer soils that may clog the coarser-
sized gravel fill materials over time.  External stability calculations should include analyses of potential sliding 
along geotextile or geocomposite interfaces, as applicable.

10.2.6:  Drainage Swale

Surface water control is a critical component of an SRW design. While most surface drainage issues are addressed by 
the site civil engineer in their grading, drainage and erosion control plans, the SRW design engineer can incorporate 
some features in the wall details to help control surface drainage in the immediate vicinity of the wall. Whenever 
possible, it is recommended that surface water be diverted away from the SRW.  This, however, is not always 
possible.  A curb and gutter may be used to direct water away from the wall face.  When the grade above the top 
of the wall slopes, the use of a drainage swale has also been used to reduce the potential for surface water from 
overtopping the wall.  

A drainage swale is a man-made depression in the ground surface used to intercept surface water and direct it in a 
controlled manner. Figure 10-5 shows two typical drainage swale details, one for a vegetated swale and the other 
detail is for a concrete or asphalt lined swale.  Vegetated swales provide a very aesthetically pleasing appearance, 
however, the effectiveness of the low permeability soil in preventing water from migrating into the reinforced soil 
mass and gravel fill should be evaluated.  Shrinkage cracks in the low permeability soil during periods of extended 
dry weather may increase the permeability of the layer to the extent that it is no longer an effective barrier layer.  
When the potential for this to occur exists, a geomembrane (an impermeable geosynthetic which is typically used to 
control fluid migration) should be included.  Concrete or asphalt lined swales may also crack with wall movement 
or significant changes in temperature and will likely need to be maintained during the life of the wall to maintain 
their effectiveness.

Section 10.3:  Subsurface Drainage Capacity Design

Three zones of subsurface, or internal, drainage are summarized in Section 10.2.  The three zones are:  directly 
behind the SRW units; at the back of the reinforced soil zone; and at the subgrade and reinforced soil mass interface 
(i.e., a blanket drain).  Drainage design for these three zones is discussed below.  Flow into the system, flow within 
and out of the system, and details are addressed for each zone.

10.3.1:  Drains Directly Behind the SRW Units

10.3.1.1:  Reinforced Soil Walls

Although its primary functions are as core fill and as a compaction aid, the gravel fill directly in, between, and 
behind SRW units will function as a drain.  Its primary function for reinforced soil walls, however, is drainage 
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of errant surface water that infiltrates the wall immediately behind the SRW units.  Infiltration of surface water 
should be minimized by wall construction design details and grading and drainage design by the site civil engineer.  
Therefore, water flow into, within and out of the system is not readily calculated.  Standard details of drain width, 
gravel fill gradation, collection pipes and outlets are normally used.  The gravel fill should not be designed as a 
primary drain for surface water runoff.  Details should eliminate or minimize the amount of surface water that flows 
into the gravel fill.

Figure 10-5:  Drainage Swale Details
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10.3.1.2:  Gravity Walls 

The gravel fill directly behind SRW units serves both to drain infiltrating surface water and to drain the retained backfill 
of the gravity walls.  Flow design of this drain should follow guidelines discussed in Section 10.3.2 where groundwater, 
and therefore subsurface flow from the retained backfill to this drain, is anticipated.  The width of the drain should be 
equal to or greater than the active soil wedge where groundwater is anticipated.  Standard width of gravel fill column 
may be used where groundwater is not anticipated and consequences of failure are minor. 

10.3.2:  Drain at the Back of Reinforced Soil Zone

The purpose of this feature is to adequately drain any subsurface water flow such that the draw down seepage forces 
acting on the back of the reinforced mass are negligible, or controlled. When forces are present, this driving force 
must be accounted for in the external stability analysis.

10.3.2.1:  Flow into the System

Anticipated flow into the drain system may be estimated using Darcy’s Law (see standard textbooks for assumptions 
and limitations).  Flow is equal to:

	 qf  =  k i Af	 [Eq. 10-1]
where:

qf	 =	 infiltration rate
k	 =	 effectively permeability of retained backfill soil
i	 =	 average hydraulic gradient in retained backfill soil
Af	 =	 area of soil normal to the direction of flow

Conventional flow net analysis can be used to calculate the hydraulic gradient.  

Some drains consist of gravel fill surrounding a perforated pipe.  Flow into the gravel fill may be calculated with 
Equation 10-1.  Flow from the gravel fill into the pipe is through the circular or slot perforations.  Perforated, 
corrugated HDPE pipe is manufactured with minimum inlet openings of approximately 1 square in. per 1 ft length 
(20 cm2 per meter length) for standard pipe (AASHTO  M 252 [Ref. 104]).  Standard pipe is generally adequate 
for most subsurface drainage applications.  Hole diameter or slot width must be checked relative to the size of the 
surrounding gravel fill, to ensure soil retention.  For slots, Equation 10-2A may be used to check retention and 
Equation 10-2B for circular perforations:

	
85 1.2 to1.4D

slot width
>

	
[Eq. 10-2A]

	

85% 1.0sizeof drain fill
holediameter

>
	

[Eq. 10-2B]

10.3.2.2:  Flow in the Drain

Flow capacity within soil drains can be estimated with Equation 10-1, using k and i for the soil drain material.  

Flow capacity within geocomposite drains can be calculated with Darcy’s Law.  Flow per unit width of a geocomposite 
drain is equal to:

	 qf  =  2 i B	 [Eq. 10-3]
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 where: 
qf	 =	 flow rate
2	 =	 transmissivity constant for a geocomposite drain
i	 =	 hydraulic gradient in drain
B	 =	 width of geocomposite drain 

The geocomposite transmissivity should be evaluated with an appropriate laboratory model test. Product long-term 
transmissivity should be quantified at anticipated (or greater) design pressure and over time to evaluate potential 
decrease of flow capacity due to creep (i.e., creep of geotextile into flow channel). 

Flow capacity within drain pipes, flowing full, can be computed with the Manning’s equation (see standard textbooks 
for assumptions and limitations).  Flow is equal to:

	
8/3 1/20.463q d s

n
=

	
[Eq. 10-4]

where: 
q	 =	 flow rate, cfs (m3/s)
n	 =	 roughness coefficient, or Manning’s value 
d	 =	 diameter of pipe, ft (m)
s	 =	 slope of energy grade line ft per ft (m per m)

10.3.2.3:  Outlets 

Collection and outlet pipes are often used with the column of gravel fill directly behind the SRW units and with the 
drain at the back of the reinforced soil mass.  Pipes are generally laid at required slopes, with a minimum of 2% for 
constructability and to ensure positive flow.  Outlets are generally spaced at 20 to 50 ft (6.1 to 15.2 m) maximum 
lateral spacing.  

10.3.3:  Drain at Subgrade and Reinforced Soil Mass Interface

A blanket drain at the interface between subgrade and the reinforced soil mass is recommended for high groundwater 
table conditions.  Flow into this drain may be computed with Equation 10-1.  Flow through the blanket drain may 
be computed with the applicable equation presented in Section 10.3.2.2.

Section 10.4:  Filtration and Permeability

An SRW consists of several soil zones.  Groundwater flow from one zone to another, and then to a drain and outlet 
feature, should be unimpeded.  If impeded, water will backup at the interface of the two adjacent zones increasing 
hydrostatic pressures and significantly decreasing the stability of the wall structure.

Soil filtration and permeability requirements must be met between each interface of two adjacent zones of (different) 
soils to prevent impeded flow and prevent soil piping into an adjacent zone.  The requirements for soil-to-soil 
contact are presented in Section 10.4.1.  In some cases, a geotextile filter is used at the interface of the two soil 
zones.  Geotextile requirements are presented in Section 10.4.2. 

10.4.1:  Soil Filtration

As water flows from one soil zone to another, the downstream soil must meet filter criteria to prevent piping of the 
upstream soil.  Furthermore, the downstream soil must have adequate permeability (i.e., flow capacity to discharge 
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the water) relative to the adjacent, upstream soil.  The filter (downstream) soil must have the correct gradation to 
function properly as a filter; these gradation requirements are also a function of the upstream soil gradation.

Design criteria for soil filters are summarized below and are based upon gradations of the two adjacent soils. These 
criteria are applicable to adjacent soils with gradation curves that are approximately parallel.  The equations are not 
applicable to gap-graded soils, soil-rock mixtures, non steady-state flow, and soils with gradation curves that are not 
approximately parallel.  When criteria are not applicable, filter design should be based upon laboratory filtration tests.

Design flow capacity cannot be realized if the upstream soil pipes into the (downstream) filter soil. The pore sizes 
in the filter soil must be small enough to retain the larger size particles of the soil, which in turn retain the smaller 
sizes of the retained soil.  The filter pore size is mathematically a function of its controlling particle size.

Particle sizes are determined with laboratory grain size analyses.  Particle sizes are defined in terms of their diameter 
and gradation in terms of percent by weight finer than a particular diameter.  Sizes used in filter and flow design are 
the D15, D50, and D85 sizes.  The D15 denotes the size of the soil particle for which 15% of the material, by weight, has 
a smaller particle diameter. Similarly, D50 and D85 soil denote the size of the surrounding finer-grained soil particles for 
which 50% and 85% respectively, by weight, of a sample can be expected to have a smaller particle size. 

Theoretical, spherical soil particles are illustrated in Figure 10-6.  The three “a” spheres represent the controlling size of the 
filter soil, which has been determined to be approximately the D15 particle size.   The “b” particle is the larger size particle 
of the soil to be retained.  This is the D85 size particle that, once retained, will create a bridge that retains the finer-grain 
particles.  Mathematically, sphere “b” will pass through the pore space of three “a” spheres that are approximately 6.5 
times the “b” sphere diameter.  Thus, a ratio smaller than 6.5:1 is required to ensure the “b” sphere is retained [Ref: 61].

The soil filtration criterion to prevent piping is presented in Equation 10-5.  This states that the D15 size of the filter 
soil must be less than or equal to 5 (five) times the D85 size of the upstream, retained soil.  

The pore sizes of the filter soil must not be too small as to impede flow.  To ensure sufficient permeability of the filter 
material, the ratio of the filter D15 to the upstream soil D15 should be greater than four to five, as shown in Equation 10-6.  

An additional criteria to prevent movement of soil particles into or through filters is presented in Equation 10-7.  
For CL and CH soils without sand or silt particles, the D15 size of the filter in Equation 10-6 may be as great as 0.02 
in. (0.4 mm) and Equation 10-7 may be disregarded.  However, if the upstream soil contains particles of uniform, 
non-plastic fine sand and silt sizes, the filter must be designed to meet these criteria.

a

b

Figure 10-6:  Schematic of Soil Filtration Principle (After Cedergren, 1989 [Ref. 61])
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10.4.2:  Geotextile Filtration

In many applications, a geotextile is used as a filter between two soils.  The geotextile must retain the soil (retention 
criterion), while allowing water to pass (permeability criterion) throughout the life of the structure (clogging 
resistance criterion).  To perform effectively, the geotextile must also survive the installation process (survivability 
criterion) [Ref. 62].

The following design criteria are from the FHWA Geosynthetic Design and Construction Guidelines Manual [Ref. 63].

For steady state flow conditions, the retention criterion is:

	 AOS <  B  D85	 [Eq. 10-8]

where:	
AOS	 =	 apparent opening size of the geotextile
B	 =	 a (dimensionless) coefficient 
D85	 =	 soil particle size for which 85% are smaller 

The AOS value of the candidate geotextile is determined from the results of the ASTM D 4751[Ref. 96] test method, 
and is typically the value published by the geotextile manufacturers/suppliers.  The B coefficient ranges from 0.5 to 
2 and is a function of the upstream soil, type of geotextile, and/or the flow conditions.  For sands, gravelly sands, 
silty sands and clayey sands (i.e., sands with less than 50% passing No. 200 sieve), B is a function of the uniformity 
coefficient, Cu (Cu = D60/D10), of the upstream soil.  Typical values of B for various values of Cu are:

	 Cu < 2	 B = 1	 [Eq. 10-9A]

	 2 < Cu < 4	 B = 0.5 Cu           	                   [Eq. 10-9B]

	 4  < Cu < 8	 B =  8/Cu	                   [Eq. 10-9C]

	 Cu > 8	 B = 1        	                   [Eq. 10-9D]

If the upstream soil contains any fines, use only the portion passing the No. 200 sieve for selecting the geotextile.  

For silts and clays (more than 50% passing the No. 200 sieve), B is a function of the type of geotextile.

	 for wovens,	 B = 1	 AOS < D85	 [Eq. 10-10A]

	 for nonwovens,	 B = 1.8	 AOS < 1.8 D85	 [Eq. 10-10B]

	 and for both,		  AOS < 0.011 in. (0.3 mm)	 [Eq. 10-10C]
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The above retention criteria are for internally stable soils.  Laboratory performance tests should be conducted for 
such soils.  Again, note that the above criteria are for steady state seepage.  For dynamic flow conditions see Holtz 
et al. (1997) [Ref. 63].

For steady state flow, low hydraulic gradient, and well graded or uniform upstream soil, the permeability and 
permittivity criteria are:

	 for permeability:	

	 kgeotextile  >  ksoil	 [Eq. 10-11]

	 for permittivity:	

	 Ψ  >  0.5 sec-1  for  <  15% passing No. 200	 [Eq.10-11A]

	 Ψ  >  0.2 sec-1  for  15% to 50% passing No. 200	 [Eq. 10-11B]

	 Ψ  >  0.5 sec-1  for  >  50% passing No. 200	 [Eq. 10-11C]

where:
k	 =	 coefficient of permeability
Ψ	 =	 geotextile permittivity, which is equal to kgeotextile/tgeotextile (i.e., permeability/thickness)

For critical or severe applications, a geotextile permeability of 10 times the soil permeability should be used.  The 
geotextile permittivity is determined from the results of the ASTM D 4491 [Ref. 99] test method.

For steady state flow, low hydraulic gradient and well graded or uniform upstream soil, the clogging criterion is:

	 AOS > 3 D15 (upstream soil)	 [Eq. 10-12]
	
This equation applies to soils with Cu > 3.  For soils with Cu < 3, a geotextile with the maximum AOS value from 
the retention criteria should be used.

 For a more thorough treatment of geotextile drains see [Refs. 62 and 63].

10.4.3:  Soil Permeability

A retaining wall designer should have an understanding of the variability of permeability values with soil types, 
and an appreciation of the flow capacities of various soil types.  The Table 10-1 illustrates permeability and flow 
capacity range of various soils.

Section 10.5:  Water Bodies in Front of Walls 

SRWs often are used for retaining soils along bodies of water such as retention and detention ponds, lakeshores, 
streams and rivers, and open channels. With proper design, SRWs can be successfully used where the wall be: 
submerged permanently, subject to fluctuating water levels above and below the bottom of the walls, or exposed to 
wave action. The design of the SRW with water bodies of water in front of them have special considerations and 
issues that should be addressed, including, but not limited to:

●● Foundation Concerns 
●● Rapid Draw Down 
●● Bouyant Soil Weights
●● Reinforced Fill Material
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Table 10-1:  Typical Coefficients of Permeability and Flow Capacities for Various Soils. 

General Soil
Descriptiona

Typical Coefficient
of Permeability

(ft/day)

Qb

(gpm)

Square Feet Needed
for Discharge Equal

to a 2-Inch Pipec

11/2 -1 inch gravel 140,000 6.8 1.2

11/2 inch gravel 50,000 2.3 3.5
3/8 inch - #4 gravel  8,000 0.36 22

Coarse sand 800 0.045 180

Fine sand 1.0 0.00045 18,000

Silt 0.001 0.00000045 18,000,000

Fat clay 0.00001 0.0000000045 2,000,000,000

(a)	 General (i.e., not specific per USCS Classification of Table 2.2) description for illustration of order of magnitude 
differences in permeability. 

(b)	 per square foot of area and gradient equal to 0.01
(c)	 gradient equal to 0.01

●● Scour/Erosion
●● Ice in Front of Wall

While the responsibilities of each design profession is determined by their contract with the owner, typically the 
prediction of wave action, water flows volumes, high water levels in the body of water, the potential for scour and 
erosion, presence of ice forces, and details to address scour and erosion are the responsibility of the project site civil 
engineer or a engineer specialized in hydraulics. Further discussion of several of these topics in relation to SRWs 
is presented in Section 11.

10.5.1:  Foundations

The foundation soils at the edge of a body of water may be saturated and sometimes consist of soft, compressible, 
or loose soils. These foundation soils must be able to support any new loads introduced by the wall installation. 
Groundwater present in foundation soils can decrease the bearing capacity or global stability around a retaining wall, 
as discussed in Section 12.3 and 12.4. If native foundation soils at a shoreline cannot properly support a planned 
wall, foundation improvement of unsuitable soils might address this. Some foundation improvement options are 
outline in Section 12.3.  

10.5.2:  Rapid Draw Down

If the water level in front of the wall will rise above the base of the wall at times and then suddenly drop (rapid 
draw down) this can create some temporary hydrostatic pressure on a SRW. The SRW units are dry-stacked without 
mortar, so the joints do allow water in front of a SRW to flow to the backfill soil behind the wall units. For a 
significant amount of hydrostatic pressure to bear on a wall, the water in front of the wall must first, at least partially, 
submerge the reinforced soil or the retained soil for sufficient length of time to saturate these soils. If these soils 
are saturated for some distance behind the wall, and there is then a sudden drop of the water level in front of the 
wall compared to an elevated phreatic surface in the reinforced soil backfill, this could cause significant temporary 
hydrostatic pressures. Also, if there is a sudden drop of the groundwater level in the reinforced soils compared to 
the retained soil water level, hydrostatic pressures may also occur at their interface.
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Significant hydrostatic pressures from rapid draw down are not common for many SRWs for the following 
reason. SRWs along bodies of water are typically only partially submerged for short periods of time that do 
not allow significant depth of saturation of soils behind the wall face. Examples of such situations would be a SRW 
surrounding a detention pond that only has water above the base of the wall for a few hours or days after a storm 
event or walls along channels or streams with water levels that only rise above the base of the wall a few times a 
year, for short periods. If the soil behind the wall contains some fine soils and sands, even for well-graded granular 
crushed aggregate, it will take a significant amount of time for the water in front of the wall to saturate the backfill 
soil. So for many walls in such circumstances, significant rapid draw down pressures are unlikely to occur.

There are some situations, however, where rapid draw down of the water in front of the wall could cause significant 
loads on the wall, even if the wall backfill has low permeability. Some walls may be planned to be submerged 
almost constantly over their design life, such as a wall along a decorative pond with standing water or along a 
reservoir, where the wall will be partially submerged during normal reservoir water levels. If the water level 
in the lake or pond is reduced suddenly at some point during the wall’s design life by sudden draining (rather 
than much more gradual reduction of water levels due to evaporation) such walls could experience hydrostatic 
pressure at the moment of rapid water draw down. 

In addition, walls with highly permeable backfill, such as free-draining open-graded gravels (GP), can also be 
susceptible to hydrostatic pressures from rapid draw down, even after a just a short time of being submerged. The 
free-draining backfill will quickly saturate during elevated water levels leaving an elevated phreatic surface in the 
backfill.  While the dry-stacked SRW units would pass some water quickly through the joints of the wall face, the 
wall face may still be significantly less permeable than free-draining backfill. Thus, during a sudden drop of water in 
front of the wall, significant water pressures could occur at the wall face. In such a case, the water pressure bearing 
on the wall face could be minimized by providing multiple levels of drain pipes at various heights of the wall. Also, 
a well-graded gravel backfill with lower permeability might be substituted for the free-draining aggregate backfill to 
minimize the amount of water the soil can absorbed during short periods of higher water levels in front of the wall. 

Hydrostatic pressures could also occur between the reinforced and retained soils if they are disparate materials and 
the reinforced soil is permeable enough to allow a sharp drop in phreatic surface between retained and reinforced 
soils to occur after a rapid draw down event. Generally, the phreatic surface in the retained soil is well below the 
wall base because the retained soils are far back enough from the water in front of the wall to avoid saturation by 
this water. Thus, the retained soil would not exert water pressures on the reinforced soil even if the water level in 
the reinforced zone can drop quickly.

For walls that are determined to likely experience hydrostatic pressures in a rapid draw down situation, AASHTO 
has suggested a minimum differential hydrostatic pressure for 3 ft (0.91 m) of water height [Ref. 36].

10.5.3:  Bouyant Soil Weights

While there are some situations where water levels might require considering the buoyant weight of submerged 
soils, this concern will not be typical for most SRWs projects for the same reasons noted above in Section 10.5.2 
Rapid Draw Down. If, however, a lower permeability wall backfill soil and the foundation soil are submerged long 
enough to fully saturate and the water level in front of the wall is later suddenly dropped, the backfill soil still may 
be buoyant at the same time the previously countervailing water pressure in front of the wall had been removed. 
If such a situation occurs, some of the resisting forces provided by weight of the reinforced fill zone may have to 
be reduced to account for its buoyant weight of the soil. As is the case with other surface and ground water issues 
discussed in this section, it is considered preferable, whenever possible, to provide proper drainage systems in and 
around a SRW to avoid potential buoyancy concerns, rather than to allow them to occur and then designing for the 
resulting changed wall properties and loads.
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10.5.4:  Reinforced Fill for Waterfront Applications

If a wall will be partially submerged at times by a body of water in front of it, the reinforced fill material must be 
specified to perform in this saturated condition. However, with appropriate design considerations, a wide range of 
soils types can be used for reinforced fill for SRWs in water applications. Reinforced material successfully used for 
SRWs in water applications include: free-draining aggregate, well-graded gravels, and sands. Well-graded gravels 
with some fines and sand, material typically used as crushed aggregate road base, is generally the preferred backfill 
material for water applications. For some short detention pond walls, even fine-grained lean clays and silts have 
been successfully used for reinforced fill. 

To minimize rapid drawdown concerns, it is suggested that the reinforced backfill have similar, or more, permeability 
than the retained soil, to avoid created resistance to drainage of the retained soil if it becomes saturated.

It is possible to use a variety materials as reinforced soil for water applications, if properly addressed in the design. 
Some materials, however, present more design and installation concerns than others. Free-draining aggregates (no 
more than 5 percent fines – No. 200 sieve) retain much of their shear strength when saturated and will not be prone 
to settlement when saturated due to lack of fines. Without carefully designed internal drainage systems, however, 
open-graded gravel backfill can allow temporary hydrostatic pressures because its disparate permeability compared 
to the SRW units wall face and any finer-grained retained soils. Also, the free-draining gravel zone can very quickly 
fill with large volumes of water that can then cause loading on the wall. Thus the rapid draw down issues discussed 
in Section 10.5.2 might be an issue with extensive reinforced zones of free-draining aggregate. 

For a wall that is only exposed to water for short periods, low-permeability, finer-grained reinforced backfill soils 
should have very little depth of saturation. Any fine-grained reinforced soil that is saturated for long-periods, 
however, may lose its strength and cause secondary settlement. In addition, generally, reinforced fill is suggested to 
have no more than 35 percent fines, so this suggestion would apply in water applications also. 

Sands provide fairly well draining reinforced materials without the concerns of finer-grained soils.  Sands have been 
used successfully as reinforced fill for many water application walls along channels and rivers, however, sands may be 
more prone to erosion or piping when exposed to flowing water, without proper design considerations to address this. 

Angular, well-graded gravels provide the advantage of a reinforced material that will best retain its strength properties 
when saturated and provide improved resistance to erosion while also being less prone to quickly filling with large 
amounts of water and causing temporary hydrostatic pressures associated with a reinforced zone of free-draining 
gravel. While a well-graded gravel is significantly more stable against erosion than finer soils and fine sands, the 
fine fraction of such a gravel still could be an erosion and piping concern if frequent flow of water in and around 
the wall system is anticipated.

10.5.5:  Scour and Erosion

Walls that will be exposed to wave action or water flow at their base, on the face of the wall, or walls that will 
be potentially fully-submerged during their lifetime should be designed to protect against the scour and erosion 
that may result from the water movement. Such design concerns around walls and other structures is typically the 
responsibility of the project civil engineer or an engineer specializing in hydraulic engineering. Further guidance on 
scour and erosion considerations for civil engineers around SRWs is provided in Section 11.4.

10.5.6:  Ice Forces in Front of Wall

Walls in northern climates can be damaged by ice forces exerted from the front of the wall. If the water level is 
above the base of the wall when the water freezes, thermal expansion of the sheet ice at the top of the water can 
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place very large loads on the front of the wall, pushing it into the soil behind the wall. This can be a particular 
problem for short walls that have little weight from above to provide sliding and shear resisting forces. If the water 
level at wintertime is typically close to the base of the wall, some ice effects may be partially disrupted by placing 
rip-rap at the base of the wall. If the area of typically problematic confined ice sheets is small and the water is not 
exposed to lengthy periods of freezing, sometimes the ice sheet can be broken up by providing circulation of the 
water. It may not be possible, however, to practically mitigate effects of ice forces or large sheets that have enough 
force through expansion or wind-driven flows to overwhelm the passive resistance of the retained soil behind a wall. 
Changes in water levels and ice flows can also create uplift forces on the wall units as well. Floating ice packs in 
heavy wave action or stream flows can create large impact forces on walls. For shorter walls, rather than attempt to 
design against the worst pressures and impacts, it may be more practical to acknowledge the possible damage due 
to ice forces and plan as a maintenance issue to re-stack SRW units occasionally displaced by ice forces.
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SECTION 11
DESIGN GUIDELINES FOR SITE CIVIL ENGINEER

On the basis of the suggested roles outlined in Section 3, this section presents guidelines for the typical design 
duties of the site civil engineer.  Geosynthetic-reinforced soil SRWs have several special design considerations 
for the site civil engineer.  The site civil engineer must plan wall layout with consideration of the SRW footprint 
and space constraints, plan appropriate slopes around SRWs, ensure excessive stormwater drainage is not directed 
toward SRW systems, avoid placing structures within the geosynthetic reinforced zone, and address erosion and 
scour concerns around SRWs.  Because the bulk of the stability of geosynthetic-reinforced SRWs is provided by 
the reinforced soils mass, the site civil should be attentive in their site design to ensuring integrity of this soil mass 
against water flows, saturation, and erosion.

The items presented in the following discussion are not an all-inclusive list of issues for the site civil engineer to 
address on sites involving SRWs.  This discussion is meant to only highlight common civil design features that 
should properly interact with the SRWs on site when the civil engineer specifies an SRW.  Many of these items have 
been covered in detail in Section 4, Wall Layout and Planning.

Section 11.1:  Wall Layout and Civil Drawings

In developing site layout and grading plans that include SRWs, the complete footprint needed to install the SRW 
system including the batter of the wall face, the length of geosynthetic behind the wall, and in cut situations, the 
area needed for the temporary excavation slopes behind the wall system should be considered.  Often, the final 
geosynthetic layout of the SRW is not available when the site civil is preparing the site plan, however, the site civil 
engineer can often obtain preliminary estimates of geosynthetic lengths from local SRW and geosynthetic vendors 
to assist in their planning. 

To account for the batter of the wall face on the site plan drawings, it is suggested that the full footprint of the wall 
face, including the alignment of the front of the wall face at the bottom of the wall and the alignment of the back 
of the wall units at the top of the wall be shown.  To evaluate locations of above and below grade structures (such 
as exiting buildings or planned utilities) near planned SRWs, the drawings could additionally show the estimated 
geosynthetic-reinforced zone on the site plan. 

When possible, it is suggested that the site civil engineer also provide generalized wall elevations/profiles for 
planned SRWs.  Often several types of retaining wall units are specified or allowed, so wall profiles (elevations) do 
not necessarily need specific wall units or wall details (which are generally provided by the SRW design engineer as 
a part of their final design wall elevation drawings) but can simply show planned grades at top and bottom of wall.  
While general in nature, such wall profiles can reveal any problems in the planned grading and wall layout.  Also, 
by interpreting grading plans with profile drawings, bidding contractors can avoid having varied interpretations and 
wall area estimates.  Generally, grading at the wall ends should have the wall profile tapering down to zero exposed 
height, unless abutting other structures.

If there is no room for a setback wall face, the site civil engineer can specify one of the many SRW unit types that 
can be installed vertically or “near-vertical” (just one to two degrees of batter from vertical).  If there is no room 
for an OSHA compliant temporary slope behind the geosynthetic zone, in cut situations, then relocating the wall 
or temporary shoring should be considered.  If SRW installation could undermine existing structures, the site civil 
engineer can consult with the geotechnical engineer and SRW engineer regarding wall location and design options.

When planning alignment of SRWs, the site civil should evaluate and address any location and easement issues such 
as wetland boundaries, property lines, existing utility easements, and no-disturbance areas.  An advantage of SRWs 
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is that they often can be fully constructed from behind the wall face, so the front face of the wall can be planned to 
be within a foot or two of construction limits, such as a wetland.

Section 11.2:  Surface Drainage Design Considerations Around SRWs

Stormwater runoff can cause substantial damage to earth retaining structures both during construction and during 
the life of the structure due to erosion, saturation, and increased hydrostatic pressures, if not properly addressed and 
controlled in the site civil design. This is particularly true for sites where surface drainage flows toward the SRWs.

One of the major problems associated with site drainage is that civil features are designed for an assumed or 
prescribed design storm event. Many stormwater management plans are based on 10 year or 25 year storm events, 
however, this design event will be exceeded sometime in the future, for instance by the 100-year event.  Extreme 
events do occur, which result in short duration (i.e., 1 – 3 hours) flows that significantly exceed the design capacity 
of the stormwater management system.  

If surface water flows toward any type of retaining wall, it is often picked up in a gutter or other stormwater 
collection feature; and this feature is often sized based upon the design storm event. The volume of water between 
the design event (ex., 10-year) and an extreme event (ex., 100-year) is usually significant.  When this occurs, site 
flooding can result, causing overtopping of the retaining wall, erosion, and an increase in hydrostatic forces within 
and behind the reinforced soil mass.  The site civil engineer should evaluate where this excess water might go during 
an extreme event.  If the SRW is at the low end of the site, the site civil engineer should design surface drainage 
and stormwater collection features (e.g., curb inlets, drop inlets, swales, etc.) to avoid the following: overtopping 
the SRW structure, directing water to or along the top of the SRW face, or ponding water behind the wall during an 
extreme event.  Generally, directing excess water runoff to overflow the top of a SRW should not be allowed.  Also, 
the civil design should not direct surface drainage into the subsurface drainage of a SRW system.

If, in spite of surface drainage mitigations, the analysis predicts the stormwater may still accumulate at the top of the 
wall or may overtop the wall, 
the site civil engineer should 
confer with the SRW engineer 
for the feasibility of allowing 
this overtopping and any SRW 
design modifications that 
may be necessary.  The SRW 
engineer may be able to design 
an overflow system for the 
wall structure to handle water 
from extreme events.  This may 
include directing surface water 
to a scupper that directs water 
over the top of the SRW units 
and down the wall face.  It may 
consist of a low spot along the 
wall’s elevation with surface 
water directed to this location, 
as illustrated in Figure 11-1. 
Without a designed overflow 
feature the water may flow over 
the top of the SRW units, in 
random or sheet flow pattern. Figure 11-1:  Surface Drainage Feature on a SRW
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Section 11.3:  Grading for Surface Drainage Around SRWs

It is preferred that the grading be designed so that surface water does not flow toward the SRW, or pond behind 
the SRW, but rather so that surface water is directed away from the wall.  This can be done in a number of ways 
including: making the center of the wall alignment a high spot, avoiding low spots in the grading immediately 
behind the wall, keeping the top of wall flush with or below the surface behind the wall, providing drainage 
collection swales well away from the wall system, and sloping grades away from wall and beyond the ends of 
walls.  If the area above the wall is paved, in some cases a curb and gutter can assist in directing water flow 
away from the wall, however, if slopes are directed towards raised curbing, water flows in big storm events 
may easily overtop them, so it is preferred to not rely solely on curbs to redirect heavy water flows near the 
top of walls.

As part of the grading plan, the site civil engineer should plan the top of wall to match the planned grades behind 
the wall, or be slightly below them, rather than specifying the top of wall extend above grade.  SRWs with the 
upper rows of units, or cap units, extending above the grade behind the wall may trap runoff water, creating either 
a standing pool of water during a storm event or erosion.  This water could find its way into the column of gravel 
fill behind the SRW units and possibly cause damage to the internal structure of the geosynthetic reinforced soil 
mass.  If the top of wall must extend above grade, the site civil engineer should consult with the SRW engineer to 
determine how to best mitigate these surface drainage concerns. 

If lower areas or swales are needed behind a SRW to collect surface drainage, it is suggested these be placed beyond 
the back of the geosynthetic reinforced zone. It is strongly suggested that a low spot or swale not be placed directly 
behind the wall face, even if sufficient surface slope is provided to gravity flow water away. In extreme events, these 
low spots and swales, even when constructed of asphalt or concrete, can become flow paths that enable progressive 
erosion at the edges and just behind the wall units. 

Section 11.4:  Erosion and Scour Issues

Slopes at the top or toe of a SRW, and grades at the ends of walls, are potentially susceptible to erosion from 
surface water. The potential for erosion around the SRW should be considered, as would be for the entire site, and 
appropriate erosion control measures included for any specified slopes, as required. Given SRWs are generally 
reinforced-soil structures, special attention to the erosion concerns in the site design is appropriate as erosion could 
compromise the wall material that provides wall stability; the reinforced soil mass.

In particular, areas around waterfront walls should be designed to protect against the scour and erosion at the wall 
base, ends of the walls, or even above and behind the walls, for walls that will be potentially fully-submerged 
during their design life.  A common issue for walls along lakeshores, streams, rivers, or channels is the potential for 
scour at the base of the wall due to wave action or high water flows. Scouring concerns are generally addressed by 
extending the wall bottom below predicted scour depth and providing scour protection at the base of the wall. Scour 
protection typically consists of a geotextile overlain with rip rap. Articulated concrete blocks or other types of mats 
are often used for base protection of channels.  Prediction of scour depths and wave forces or water flow velocities 
and design details to address these issues are typically the responsibility of the project civil engineer or an engineer 
specializing in hydraulic engineering.

Erosion around SRWs in water application walls can be a particular concern where water flow may wash away soils, 
such as at the ends of the wall and or even at the top of the wall, if the wall high water levels will overtop the wall. 
As with surface drainage issues, the grading and erosion control plans for water application walls should determine 
water flow patterns, evaluate areas of concern, and either direct water away from the wall area or provide means to 
protect edges of the wall from erosion.



164� Design Manual for Segmental Retaining Walls 3rd Edition 

Section 11.5:  Stormwater Collection–Catch Basins/Drop Structures

As stated previously, the site civil engineer should provide surface grading and stormwater collection structures to 
direct surface drainage away from the SRWs.  Whenever possible, catch basins, drop inlet structures, and storm 
drain lines should be located outside the reinforced soil mass.  If these structures malfunction, the potential for 
hydrostatic water forces to develop and impact the SRW system is increased dramatically.  Erosion of the soil 
around these structures, due to water flowing toward or around them, can also cause problems for SRWs.

Often when retaining walls are at the low points of sites, grading is designed to slope all grades down towards 
the retaining wall with catch basins and low spots that are directly behind the face of the retaining wall.  This 
creates several concerns for SRWs including top of wall erosion issues, pooling water directly behind the wall, 
and the difficulty of incorporating the catch basins and drop structures within the reinforced soil mass.  Whenever 
possible, low points for catch basin locations should be located behind the SRW geosynthetic reinforced zone.  This 
minimizes erosion issues at the wall face, reduces the risk of surface water entering the gravel fill column behind 
the wall face, and shifts any ponding water further away from the wall system where it is less likely to have a 
destabilizing effect of the wall.

When catch basins, drop structures, and manholes must be placed in the reinforced soil mass, the site civil engineer 
should consult with the SRW engineer regarding the feasibility of the planned locations, ways to improve the 
durability of these structures and their connections, and special design details and specifications for the geosynthetic 
reinforcement and backfill soil.  Because the SRWs are reinforced soil structures, any stormwater structures placed 
in the reinforced zone may experience some post-construction settlement even when properly compacted, and 
this could affect the integrity of the drainage structures.  If settlement occurs, it can cause openings between inlet 
structures and discharge pipes or other joints.  For these reasons, the site civil engineer should carefully evaluate 
and address these issues with the project geotechnical engineer and the SRW engineer.

Section 11.6:  Drainage Structure Outlet Pipes Passing through SRW Face

It is preferable to have no outlet pipes greater than 6 in. (152 mm) in diameter penetrate the wall face.  When 
practical, the site civil engineer should direct larger piping around the wall system rather than outletting through 
the face.  Wall face penetrations for stormwater management structures have the potential to carry large quantities 
of water at large velocities.  If construction of the lines is substandard, water may escape the storm sewer lines and 
saturate the fill, possibly causing erosion of the soil into the storm line and a build up of hydrostatic pressure.  Also, 
there can be differential settlement between the pipe and the wall face.  The result can be erosion at the toe of the 
wall or movement of drainage stone and/or reinforced fill through the joint between pipes and the wall face units.  
If piping is directed through the wall face, it is preferable that the site civil engineer design the pipe alignment to 
be perpendicular to the wall face, to minimize the intrusion in the geosynthetic reinforced zone and to minimize the 
pipe outlet erosion/scour concerns.

Section 11.7:  Stormwater Management Ponds

SRWs are often successfully used around stormwater management ponds to increase their capacity by adding depth 
and replacing sloped sides.  With proper design consideration, SRWs can be used for pond walls including situations 
where the pond water levels will submerge the walls.  The site civil engineer should provide predicted water levels 
to the SRW engineer for consideration in their wall design.

The site civil engineer should address any erosion or scour concerns in the detention pond, particularly where 
stormwater drainage pipe outlets the face of the wall.  The site civil engineer should provide predicted scour depths 
at the base of the wall to the SRW design engineer,  including any needed erosion control structures such as cast-in-
place concrete aprons, head walls, and rip-rap in their designs.
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Section 11.8:  Waterfront Application Walls

SRWs have been successfully and extensively used for retaining walls along bodies of water such as ponds, lakes, 
streams, rivers, and channels. Several significant civil engineering issues arise when retaining walls are placed along 
shorelines such as erosion and scour considerations. Where wave action or high flow volumes are anticipated, the 
potential scour depth should be determined by the project civil engineer or an engineer specializing in hydraulics. 
Scour at the base of walls can often be minimized by providing scour protections such as rip-rap underlain by 
geotextile. The project civil engineer should also address other sources of erosion from the body of water, such as 
the edges of structures and from flood waters overtopping the walls and flowing over the material behind the top of 
the wall, as discussed in Section 11.4.

Shoreline walls my also be subject to impacts from objects in the water such as flood debris in a river or possible 
ice  sheets driven by wind. The potential damage to the SRW should be addressed and sources of impacts minimized 
whenever practical. 

Section 11.9:  Utilities within Reinforced Soil of SRWs

Generally, utilities should not be located within a SRW reinforced soil zone because of the difficulty of placing 
geosynthetic reinforcement around utility lines as well as the difficulty reaching the utilities for future repairs 
without structurally damaging the geosynthetic soil reinforcement.  An additional concern is post-construction 
settlement of the wall backfill damaging the utilities.  Sometimes, shallower utility lines running perpendicular to 
the wall face can be accommodated with special detailing by the SRW engineer.  Utility lines running parallel to 
the wall face within the geosynthetic reinforcement can rarely be accommodated and when possible only in limited 
zones with specialty details.  Therefore, when planning the site utility layout, the civil engineer should plan to keep 
utilities beyond the geosynthetic-reinforced soil zone of the SRW.

Section 11.10:  Underground Stormwater Detention Structures and Permeable Pavements

In order to optimize development at a site, owners are more frequently placing stormwater management facilities 
underground.  These systems may be holding systems or recharge systems.  Recharge systems allow the stormwater 
to percolate into the ground (such as perforated pipes surrounded by aggregate).  It is suggested that any type of 
underground stormwater detention structures be kept outside the SRW geosynthetic-reinforced soil mass for the 
same reasons other utilities are kept outside SRW systems.  Recharge systems have an additional concern because 
they may cause hydrostatic forces to develop, unless subsurface drainage systems can be implemented to remove 
the water.  Thus underground recharge systems should not be placed directly behind the reinforced zone.  Permeable 
pavements can act as recharge systems, as such permeable pavements directly behind SRWs should be modified in 
design to avoid hydrostatic pressure on wall systems and to avoid continual saturation of the reinforced fill below the 
permeable pavement.  As an example, permeable concrete or asphalt pavement may be transitioned to impermeable 
pavement behind and on top of a SRW.  If permeable pavers are used, for reasons of consistent aesthetics, it may be 
desired to continue these in the area above the wall. In this case, a liner is recommended to underlie the aggregate 
base of the permeable pavers that directly impact the SRW system, to direct water away from a SRW and to avoid 
any saturation of the reinforced backfill.

Section 11.11:  Snow Management

In the northern states, movement of accumulated snow around SRWs can be a concern.  In parking areas, snow 
plows may find the top of SRWs the most convenient or only place to pile snow.  Large piles can create heavy snow 
loads that the SRW was not intended or designed to support.  Also the long, slow melt of the snow pile may cause 
deep saturation of the reinforced and retained soil behind an SRW that would not occur just from stormwater.  This 
can result in a loss of shear strength and an increase in driving forces on a SRW. In some cases, snow removal 
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is accomplished by pushing snow over the top of a wall. This can cause damage to the top the wall and possibly 
overturn the top unreinforced units. In northern states, the site civil should consider how accumulated snow will be 
managed on site and take design measures to ensure snow will not be piled or thrown over the top of SRWs.  This 
may include designating snow storage areas and specifying permanent signage to indicate where on the site the 
snow should be stored and signs at the top of walls warning that snow should not be piled there.  If the site civil 
engineer cannot determine a way to avoid snow from being piled at the top of a SRW, they should consult with the 
SRW engineer to design the SRW to accommodate the predicted snow loads and soil saturation concerns.

Section 11.12:  Fencing, Guide Rails, and Traffic Barriers

Generally the site civil engineer is responsible for traffic control structures and determining when and where fencing, 
guide rails, or traffic barriers are needed on a site and in such a role, the site civil should design and specify structures 
appropriate for use around SRWs.  While the structural design of these structures are typically the responsibility of 
the structural engineer and detailing the incorporation these structures within a SRW are typically the responsibility 
of the SRW engineer, the site civil engineer should address the purposes, locations, and needed load capacity.
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SECTION 12
DESIGN GUIDELINES FOR PROJECT GEOTECHNICAL ENGINEER

While each engineering professional’s responsibilities for any project will be determined by what services and roles 
the owner or owner’s representative contracts them to perform, it is recommended the project geotechnical engineer 
be responsible for the following: providing the soil shear strength parameters and index properties for use in design 
of the SRW, for determining the groundwater table, determining seismic conditions at the site, and for performing 
global stability, bearing capacity, and settlement analyses for the SRW.

A qualified geotechnical engineer familiar with the project site should evaluate all engineering data and provide 
recommendations and/or an assessment of the following items:

●● Soil Properties
●● Bedrock
●● Groundwater Conditions
●● Bearing Capacity
●● Settlement
●● Slope stability
●● Seismic

Section 12.1:  Geotechnical Investigations

Many projects involving SRWs require a site specific soil investigation before retaining wall design can begin. 
Local building code will often establish minimum criteria for when a site specific geotechnical report is required. 
Building codes or the geotechnical engineer’s judgment may also require a site specific subsurface exploration. 
Beyond any building code requirements, a site specific subsurface exploration and geotechnical report is suggested 
if any of the following conditions exist:

●● Significant structures (i.e., those that involve potential for loss of life or significant property damage)
●● Sites on or adjacent to operating or abandoned landfills or subsurface mines 
●● Areas where Karst topography is present
●● Steep slopes in the vicinity of the retaining wall
●● Cohesive soils are proposed for the infill soil
●● Groundwater elevations above the proposed bearing pad elevation
●● Seismic activity in area
●● Weak or unstable native soils are present (i.e. marine clays)

If the original geotechnical report for a larger project does not include investigation and recommendations specifically 
for the SRWs, it is recommended that the geotechnical engineer provide additional review and recommendations 
for the SRWs and SRW locations.

The feasibility of using an SRW depends on the existing topography, subsurface conditions, and soil/rock properties.  
It may be necessary to perform a comprehensive subsurface exploration program to evaluate site geotechnical 
conditions prior to designing a new SRW.

When performing subsurface investigations, geotechnical conditions should be considered not only in the area 
of the construction and at the wall face but also under the geogrid reinforced zone, as well as behind and in 
front of the SRW system, to assess overall performance behavior. The subsurface exploration program should 
address the site conditions that not only influence the design and stability of the final structure, but also the 
conditions that will prevail throughout the construction of the structure, such as the stability of temporary 
construction slopes. 
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The cost of a reinforced soil structure is greatly dependent on the availability of the required type of backfill 
materials.  Therefore, investigations may be needed to locate and test locally available materials that may be used 
for backfill with the selected system.

12.1.1:  Subsurface Exploration

The subsurface exploration program generally consists of soil soundings, borings, test pits, or a combination of the 
three techniques.  The type and extent of the exploration should be decided after review of the preliminary data 
obtained from the field reconnaissance and in consultation with a geotechnical engineer or an engineering geologist.  
The exploration must be sufficient to evaluate the geologic and subsurface profile in the area of construction.  

The geotechnical subsurface exploration around a SRW should be similar to what would be done around any type 
of proposed retaining wall.  The scope of the subsurface exploration around SRWs should be planned so that the 
geotechnical engineer can provide the soils and subsurface data needed for the SRW design, as described in Section 
12.2, and so the geotechnical engineer has needed data to perform the foundation and global analyses around SRWs, 
as described in Sections 12.3 and 12.4. The following guidelines are suggested for the subsurface exploration for 
potential SRW applications, but are not absolute or inclusive:

●● Soil borings should be performed at intervals of:	
- 100 ft along the alignment of the soil-reinforced structure,	
- 150 ft along the back of the reinforced soil structure,	
- significant structural or grade changes.

●● For planning purposes, the width of the SRW (including geogrid lengths) may be assumed as 0.6 to 0.8 
times the anticipated height, unless steep slopes are present, then longer grid lengths may be anticipated. For 
complex sites, the geotechnical engineer may want to request preliminary engineering of the SRW to aid in 
their subsurface exploration plan. 

●● The subsurface exploration, including but not limited to boring depth, coring of bedrock, groundwater 
measurement and monitoring, soil sampling, and in situ testing, should be done around SRWs by the same 
standards and methods as elsewhere on site. 

●● Adequate bulk samples of available soils should be obtained and evaluated to determine the suitability 
of the soil for use as backfill in the SRWs.  Such materials should be obtained from all areas from which 
preliminary reconnaissance indicates that borrow materials will be used.

●● As with any other type of proposed structures, test-pit explorations should be performed around planned 
SRWs in areas showing instability, karstic activity or to explore further availability of the borrow materials 
for backfill.  The locations and number of test pits should be decided for each site.

The development and implementation of an adequate subsurface investigation program can be a key element in 
the successful project implementation.  Causes for distress experienced in projects are often traced to inadequate 
subsurface exploration programs, which did not disclose local or significant areas of unsuitable soils, causing 
significant local differential settlement and distress to the facing units of SRWs or even greater distress to the entire 
SRW structure and structures above the wall.  Where the select backfill is to be obtained from on-site sources, the 
extent and quality must be fully explored to minimize the chance of encountering changed conditions.

12.1.2:  Laboratory Testing

Soil samples should be visually and/or manually classified and appropriate tests performed for classification 
according to the Unified Soil Classification System (ASTM D 2488 [Ref. 77]).  These tests permit the engineer 
to decide what further field or laboratory tests will best describe the engineering behavior of the soil at a given 
project site.  Index testing includes determination of moisture content, Atterberg limits, compressive strength, and 
gradation.  The dry unit weight of representative undisturbed samples should also be determined.
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For large or complex walls or walls built in areas of known problem soils, shear strength determination by unconfined 
compression tests, direct shear tests, or triaxial compression tests may be needed.  The geotechnical engineer should 
determine the need for such testing depending on the uniformity, consistency, and predictability of the site soils, 
based on their  knowledge of local geotechnical conditions and their knowledge of on-site subsurface conditions. 
At sites where compressible, cohesive soils are encountered below the foundations of the SRW, the geotechnical 
engineer may need to perform consolidation tests to obtain parameters for making settlement analyses.  Ideally, both 
un-drained and drained (effective stress) parameters should be obtained for cohesive soils to permit evaluation of 
both long-term and short-term conditions.

Depending on the geometry of wall configurations on site, the accuracy of the soil property determinations may be 
an economic issue and thus factor into the planned scope of soil testing. With the presence of steep slopes around a 
retaining wall, small changes in soil property assumptions, such as the predicted friction angle of the soil, can have 
a profound effect on the predicted loading on the retaining walls. Thus the required geogrid reinforcement length 
for a SRW and hence on the cost of wall materials and earthwork can be very sensitive to assumed soil parameters 
when there are steep slopes above or below the retaining wall. A relatively small investment in more accurate and 
thorough laboratory testing that allows the geotechnical engineer to be less conservative in assigned soil properties 
could yield significant cost savings in design and construction.

Of particular significance in the evaluation of any material for possible use as backfill in the geogrid reinforced 
zone are the grain size distribution and plasticity.  The effective particle size (D10) can be used to estimate the 
permeability of cohesionless materials.  Laboratory permeability tests may also be performed on representative 
samples compacted to the specified density.  Additional testing may include direct shear tests on a few similarly 
prepared samples to determine shear strength parameters under long and short-term conditions.  The compaction 
behavior of potential backfill materials should be investigated by determining moisture-density relationships.

Where experience indicates reason for concern of high pH (above 9), the soil pH should be determined so that 
the potential aggressiveness of the backfill material and the in-situ soils behind the reinforced soil mass may be 
considered in evaluating the long-term strength of the geosynthetic reinforcement.

Section 12.2:  Geotechnical Properties for SRW Design

12.2.1:  Soil Properties for the SRW Engineer

The soil and subsurface conditions within and around a SRW typically exert the greatest influence on the structural 
design of the SRW by the SRW design engineer and therefore, accurate geotechnical information is crucial for a 
safe and efficient design, especially when the site conditions include steep slopes, surcharges on the SRW, or tiered 
walls.  While the ultimate responsibility of each design profession is determined by their contract with the owner, it 
is recommended the geotechnical engineer provide the evaluation of soil properties and other subsurface conditions 
in the vicinity of a SRW and report  this soil data so that SRW engineers can use it for their wall designs. 

The geotechnical properties of the foundation and retained materials as well as the soil properties of the reinforced 
soil should be provided by the geotechnical engineer to the SRW engineer. If onsite soils are planned for use as 
reinforced backfill for a SRW, the geotechnical engineer should also evaluate and report the soil properties of this 
onsite material. As a soil, a proposed source of reinforced soil should be tested and classified by the geotechnical 
engineer. Reinforced soil is also a wall material, and as such, should have its properties specified by the SRW 
engineer. Given this dual involvement in the reinforced soil, it is recommended that the geotechnical engineer and 
SRW engineer should both review and approve any soils planned for use as reinforced soil in a SRW.

Rather than providing already computed retained lateral pressures in the form of equivalent earth pressures as 
traditionally done for structural engineers, generally it is suggested that for SRW engineers, the geotechnical 
engineer provide soil classifications and soil densities and frictions angles per the following table:
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From the properties in Table 12-1, the SRW engineer will generally determine the active earth pressures on the 
SRWs themselves per Coulomb’s Earth Pressure theory (see Section 5.4). If the geotechnical engineer provides 
only equivalent fluid pressures (EFPs) rather than those properties listed above, the SRWs engineer would then 
have to convert these EFPs back to friction angles and soil densities to do a traditional SRWs external analysis per 
this manual. Given the EFPs are calculated by the geotechnical engineer from both densities and friction angles, 
without further directions, this leaves the SRW engineer with two unknown variables. In addition, often geotechnical 
engineers calculate an un-stated load factor (factor of safety) in their EFPs, making it difficult for a SRWs engineer 
to determine the original soil properties the geotechnical engineers used when calculating the EFPs. Therefore it is 
preferred for SRWs that the geotechnical engineer provide the raw soil data in Table 12-1 rather than EFPs.

Because this manual’s design method conservatively ignores cohesion when calculating lateral earth pressures 
from the retained soil directly behind the SRWs system, SRWs engineers typically do not need guidance in regards 
to any predicted cohesion in the retained or reinforced backfill soils. The cohesive strength of foundation soils, 
however, can be accounted for in the SRW design when evaluating the foundation sliding resistance.  Given this, 
the geotechnical engineer should provide predicted cohesion for the foundation soils, if it indeed exists.

12.2.2:  Soil Type Classification

The Unified Soil Classification System (USCS) is commonly used to classify soils and is based on a dual letter system. 
The advantage of the system is that soils falling into a classification group can be expected to have similar engineering 
properties [Ref. 28].  Classification can often be based on visual inspection and/or from the results of a number of 
relatively simple laboratory tests.  Additional discussion of soil classification can be found in Section 2.4.1.
		

12.2.3:  Soil Shear Strength

The conventional approach in geotechnical engineering is to describe the shear strength of a soil using a Mohr-
Coulomb failure criteria.  The Mohr-Coulomb failure criteria relates the normal stress acting on an internal soil 
failure surface to the peak shearing resistance that is available along that surface. Detailed discussion of shear 
strength (τ) can be found in Section 2.4.2.

12.2.4:  Groundwater Data

The groundwater conditions in the vicinity of the proposed retaining wall system should be clearly stated in the 
site geotechnical report including anticipated groundwater levels and identification of the potential for hydrostatic 
pressures or seepage forces on or within the soil retaining wall structure. Ideally the geotechnical report should 
include the following:

●● Current groundwater levels
●● Normal seasonal fluctuations

Table 12-1:  Soil Data for In-Situ Materials Provided by Geotechnical Engineer
Soil Type Unit Weight Friction Angle (phi) Cohesion

Reinforced Backfill 
(if onsite materials are used)* n/a

Retained Soil n/a

Foundation Soils

*  While geotechnical engineers typically evaluate properties of on site soils that are proposed for reinforced fill, the specification of 
minimum properties required for the reinforced soil, a wall material, is the SRW engineer’s responsibility.

Note: For recommended properties refer to Section 2.4. 
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●● Maximum previous groundwater elevation
●● Regional groundwater flow
●● Probable maximum projected groundwater elevation
●● Probable influence of proposed site grading changes on groundwater flow and elevation
●● Identification of the potential for hydrostatic pressures or seepage forces on or within the soil retaining wall 

structure

12.2.5:  Other Geotechnical Properties

Beyond soil properties and groundwater conditions, other geotechnical considerations of potential influence to the 
SRW design should be reported including, but not limited to, bedrock location and properties, underground voids 
such as mining impacts or karst topography, and site seismic conditions.

Section 12.3:  Foundation Evaluations and Recommendations

12.3.1:  Gravity SRW Bearing Capacity

A geotechnical engineer determining the bearing capacity underlying an SRW can perform this analysis with traditional 
geotechnical theory. The ultimate bearing capacity (Qult) is calculated according to the following equation:
  
	 Qult = cf Nc + 0.5γf fB′  Nγ + γf Hemb Nq	 [Eq. 12-1]

This is the classical bearing capacity equation for a continuous footing [Ref. 13].  The quantities Nc, Nγ and Nq are 
dimensionless bearing capacity coefficients that can be obtained from Table 12-2 using the peak friction angle of the 
foundation soil ϕf .  In the case of SRWs, the surcharge term [γf Hemb Nq] in the bearing capacity equation accounts 
for the depth of the SRW “footing” in that the depth of the overall wall system is (Hemb ), the wall embedment 
below finished grade in front of the wall. The assumption of a permanent surcharge mass must only be exercised 
if large excavations in front of the wall will not occur for the life of the structure.  The stabilizing effects of wall 
embedment are applicable to bearing capacity since deformation requirements are significantly less stringent for 
vertical pressure rather than lateral pressure. 

 The quantity fB′  is the equivalent footing width of the SRW due to eccentric footing loads (based on the width of 
the units for unreinforced SRWs and width of the reinforced soil mass for reinforced SRWs)

In bearing capacity analysis for unreinforced SRWs, a portion of the compacted aggregate bearing pad (Figure 12- 1) 
is assumed to act as a conventional continuous footing. The dimensions of the maximum contact area between the 
bottom of the bearing pad and the foundation soils is calculated assuming that vertical stress from the wall is 
distributed over an expanded area with side slopes at 2 vertical to 1 horizontal (Figure 12-1).  The aggregate leveling 
pad is assumed to extend at least 6 in. (152 mm) beyond the toe and heel of the base SRW unit and have a minimum 
thickness of 6 in. (152 mm). 

	 Bf = Wu + hlp	 [Eq. 12-2]

	 fB′  = Bf - 2ec	 [Eq. 12-3]

Eccentricity can be calculated by summing moments about the center of the footing base. The center of rotation is taken 
as the point located a horizontal distance Wu /2 from the toe of the bottom SRW unit for unreinforced walls. Moments 
are considered positive in a counter-clockwise direction in this calculation set.  Eccentricity is calculated as:
    
	 ec = [Ps Ys + Pq Yq  -  WW eW]/WW	 [Eq 12-4]
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where:

	 eW  =  XW - 0.5 Wu	 [Eq. 12-5]

The factor of safety with respect to bearing capacity (FSbc) is determined as follows:

	 FSbc = Qult/Qa	 [Eq. 12-6]

Qa, the bearing pressure from the SRW system, should be the value calculated by the SRW engineer.

Figure 12-1:  Free Body Diagram of External Forces for Conventional Single Depth SRW
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The following assumptions are made in bearing capacity analysis:
1.	 The total footing load is distributed uniformly over a portion of the footing width fB′  to account for base 

eccentricity (ec) (the conventional Meyerhof approach to geotechnical footing design).
2.	 Inclination of net footing loads is ignored in order to avoid excess conservativeness in bearing capacity 

calculations and to be consistent with conventional practice for rigid gravity wall structures.  The 
conservatism is created by the design assumption to ignore vertical component of Pa. Similarly, corrections 
for footing shape and length are also ignored in this set of calculations.

3.	 The effect of embedment depth (Hemb) to the top of the aggregate leveling pad is accounted for as a dead load 
surcharge. The soil in front of the wall is assumed to have no shear resistance in bearing capacity analyses.  
The assumption of a permanent surcharge mass must only be exercised if large excavations in front of the 
wall will not occur for the life of the structure.  If excavations are made they should normally be restricted 
to short excavation lengths in order to minimize the potential loss of toe support at the wall.

12.3.2:  Soil Reinforced SRW Bearing Capacity

Conventional bearing capacity analyses are carried out with respect to the base width L of the reinforced (infill) soil 
mass. The reinforced (infill) soil mass is assumed to act as a continuous strip footing and must have sufficient width 
L to prevent overstressing of the foundation soils that may lead to a shear or bearing capacity failure, or excessive 
deformation of the foundation soil.

In this design manual, the conventional Meyerhof stress distribution approach is adopted.  It is utilized to ensure 
a conservative estimate of applied bearing stress.  The effect of eccentricity of the resultant bearing force (net 
foundation load) is to restrict compressive bearing pressures to an equivalent bearing area B calculated as:

	 B = L - 2e	 [Eq. 12-7]

Here e is the eccentricity of the foundation load Rb (Figure 12-1).  The quantity (e) can be calculated by summing 
moments about the center of the base length (L/2) with counter-clockwise being positive:
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[Eq. 12-8]

The applied bearing pressure (Qa ) acting over the equivalent bearing width B is:
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= 	 [Eq.  12-9]

For many projects, the site geotechnical engineer may have established an allowable bearing pressure for the 
foundation soils that include a settlement as well as bearing capacity criteria.  The calculated Qa should be less than 
the established allowable bearing pressure; if not, increase L or consult Section 12.3.4.

The ultimate bearing capacity (Qult) is calculated according to Equation 12-10:  
	
	 Qult = cf Nc + 0.5γf B Nγ + γf Hemb Nq	 [Eq. 12-10]

The non-dimensional bearing capacity coefficients Nc , Nq and Nγ can be found in Table 12-2. The surcharge term [γf 
Hemb Nq] in the bearing capacity equation accounts for the benefits of deep (Hemb ) wall embedments.  The assumption 
of a permanent surcharge mass must only be exercised if large excavations in front of the wall will not occur for the 
life of the structure.  The stabilizing effects of wall embedment are applicable to bearing capacity since deformation 
requirements are significantly less stringent for vertical pressure rather than lateral pressure.
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For walls on slopes, additional bearing capacity factors for sloping ground in front of the wall, denoted gc, gq and gγ, 
are included in the bearing capacity equation (Bowles, 1982 [Ref. 109]).  

The factor of safety with respect to bearing capacity FSbc is determined as follows:

	 FSbc = Qult/Qa	 [Eq. 12-11]

If the value of FSbc is less than the minimum design value (typically 2.0, see Table 5-2) the usual strategy is 
to incrementally increase the reinforced soil base width L, or either increase the embedment depth of the wall 
or improve the foundation soils and repeat the calculation set.   Consult Section 12.3.5 for more strategies to 
handle difficult foundation conditions if the required base length L is undesirable from a construction or cost 
perspective.

12.3.2.1:  Base Eccentricity

This design manual utilizes base eccentricity e solely to calculate an equivalent footing width B to ensure a 
conservative calculation of applied bearing pressure.  Throughout this NCMA method, the vertical stress at any 
point used to calculate lateral stress will be the conventional overburden stress (σv) (Equation 5-2), appropriate for 
Coulomb earth pressure theory.  This assumption of a uniform vertical stress distribution is substantiated by data 
from instrumented test walls [Refs. 31, 33, 39, 40, 42 and 43].

12.3.3:  Groundwater Effects on Bearing Capacity

Groundwater table beneath a SRW can decrease the bearing capacity of the foundation soil.  Three possible 
groundwater conditions are possible, as described in Section 10, Figures 10-2 through 10-4.  Ultimate bearing 
capacity varies for these three cases are discussed below.  It should be noted that the following equations are 
concerned with gravity retaining walls.  For reinforced soil SRWs, simply replace fB′  with B in the equations.  
Additional discussion of the following drainage cases can be found in Section 10.2 and 10.5.

Case 1:  Groundwater table remains at a distance 2/3H below the bottom of the wall for the design life of the 
structure (Figure 10-2).

Ultimate bearing capacity (Qult ) when the groundwater is well below the leveling pad (e.g., greater than 2/3H below 
the toe of the wall) is calculated at follows:

	 Qult  =  cf Nc + 0.5 γf fB′  Nγ + γf Hemb Nq	 [Eq. 12-12A]

where:	 γf  =  total unit weight of soil

Case 2:  Groundwater table rises to or remains just below the leveling pad elevation during the design life of 
the structure (Figure 10-3).

	 Qult  =  cf Nc + 0.5 γf1 fB′  Nγ + γf Hemb Nq	 [Eq. 12-12B]

where:
γf1       	=   buoyant or effective unit weight of soil
γf1 	 =   γsat  - γwater   
γsat     	 =   saturated unit weight of soil
γwater  	 =   unit weight of water
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Table 12-2:  Bearing Capacity Factors (after Vesic, Ref. 13)
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If the groundwater is stable at an elevation between the leveling pad and a depth of 0.66H, an average unit weight 
should be used for γf. This is a fourth case condition. Note that the cohesion (cf ) of the foundation soil may change 
as the groundwater table rises. 

Case 3:	Permanent or intermittent groundwater is present in the retained soils above the leveling pad elevation 
(Figure 10-4).

	 Qult  =  cf Nc + 0.5 γfl fB′  Nγ + γf Hemb Nq	 [Eq. 12-12C]

If the groundwater level is at the finished grade at the toe of the wall, γfl is equal to γf . Note that the cohesion (cf ) of 
the foundation soil may change as the groundwater table rises. 

For additional information on bearing capacity and effects of groundwater table on bearing capacity see Ref. 56.

12.3.4:  Foundation Settlement Prediction
 
An assessment of the type, thickness and compressibility of proposed foundation soils should be conducted. Sufficient 
information is required to estimate maximum total and differential settlement during and after wall construction.  
Also, the geotechnical engineer should investigate for the presence of any potential collapsible soils in the vicinity 
of the SRW that could cause distress or failure to the structure.

A SRW will typically impose pressures on the foundation soils in excess of pre-construction activities that lead 
to compression of foundation materials. For cohesionless soils (i.e., sands and gravels), these settlements are 
typically small and occur mostly during construction.  Saturated cohesive soils, on the other hand, may exhibit large 
time-dependent deformations.  For most routine structures, conventional one-dimensional consolidation theory 
as presented in most geotechnical engineering textbooks [Refs. 4, 8, 17, 20 and 22 - 25] will give an acceptable 
estimate of potential settlements.  The calculation of total and differential settlements due to footing loads applied 
to the foundation soils is complex and requires a thorough knowledge of the consolidation properties of site soils.  

The dry-stack mortarless construction method for SRWs founded on an aggregate bearing pad and geogrid-
reinforced backfill soil combine to create a flexible gravity structure that can tolerate large total settlements and 
moderate differential settlement.  For most standard SRW units (< 2 sq ft (0.61 sq m) face area) a differential 
settlement of 1% is acceptable.  In situations where large settlement and/or greater differential settlement than 
1% is expected, special design steps should be taken.
	

12.3.5:  Improving Foundations
	
Unsuitable foundation conditions at the planned base elevation of the wall can be improved by one or a combination 
of the following techniques:

●● Excavate and replace unsuitable soils with adequate oversizing of the excavation.
●● Locate base of SRW at competent soil.
●● Expand the aggregate leveling pad width and thickness.
●● Reinforce a thickened aggregate leveling pad with geogrid.
●● Preload the area prior to wall construction.
●● Preload wall prior to paving or building construction above wall.
●● Employ soil improvement techniques: vibrocompaction, stone columns, dynamic compaction.

All areas below a SRW system that have bearing capacity or settlement issues should be addressed. In the case of 
reinforced SRWs, the reinforced soil zone may be adding as much new load to the foundation as the SRW units do 
at the face of the wall. So foundation materials below the reinforced soil zone may need to be improved as well as 
the area directly below the SRW unit wall face.
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Section 12.4:  Global Stability Around SRWs

A critical geotechnical assessment to be made for projects involving SRWs is the long-term slope stability (i.e., 
global stability) around the SRWs. The stability analysis should include the influence of all site geometry, soil and 
rock properties, existing and proposed loading, groundwater conditions, and existing or proposed slopes above and 
below the retaining wall.

A global stability failure involving a SRW is defined as the general mass movement of the structure and adjacent 
soil mass. Global stability concerns may result from changes in grade, weak soil layers, increase in groundwater 
elevation, and/or the additional gravitational forces imposed on the site soils as a result of construction.  While the 
ultimate responsibility of each design profession is determined by their contract with the owner, it is recommended 
that the geotechnical engineer be responsible for the evaluation of the global stability of soil masses in and around 
SRWs as a required part of a geotechnical analysis just as it is for other types of structures.

A detailed presentation of slope stability methods can be found in many geotechnical engineering text books [Refs. 
4, 8, 17, 20, 22, 23].  The analytical derivation for the equation defining factor of safety (FSglobal) is based on force 
and moment equilibrium.  Commercially available slope software that uses Bishop’s method or other slope stability 
analysis methods is the typical means for evaluating global failure surfaces around retaining walls. The minimum 
design factor of safety against global instability recommended in this manual is 1.3. 

Because SRW structures consist mostly of geogrid-reinforced soil, critical global failure surfaces may sometimes 
pass through a portion of a SRW.  To analyze such failure surfaces accurately, the global analysis method and 
software should have the means to account for the SRW unit properties and the geogrid reinforcement layers.  As 
a simplification, the SRW units are sometimes modeled as a soil zone having equivalent shear strength properties 
and horizontal width as the units.  Methods for accounting for the geogrid reinforcement vary with global analysis 
methods and software.  A global stability evaluation could account for geogrids in a method similar to this manual’s 
much more limited Internal Compound Stability (ICS) analysis.  ICS accounts for the geogrid as a resisting force 
as explained in Section 8.4, however, this possible similarity of ICS methods to global analysis methods should not 
be mistaken to indicate ICS is a global analysis.  ICS, as defined in this manual, is much more limited than a global 
analysis and is not a substitute for a complete geotechnical global stability review.

12.4.1:  Ensuring All Critical Failure Surfaces are Evaluated

Projects involving retaining walls can have complex site grading and geometry, so an important factor in a proper 
geotechnical evaluation is taking particular care to ensure that all potential global stability failure surfaces are 
analyzed and addressed in the vicinity of a SRW.  Figure 12-2 summarizes common potential failure surfaces in and 
around a single height SRW. The failure surfaces that occur in the top slope independent of the wall (Surface A) or 
pass behind and below the SRW structure (Surfaces F, G) are labeled as global failure surfaces. It is recommended 
that these be analyzed by the geotechnical engineer per an acceptable slope stability analysis method. 

In addition to global failure surfaces that pass behind and below the wall system, there are possible failure surfaces 
that start behind the wall system but then pass through some part of the wall system, sometimes referred to as 
compound failure surfaces. These failure surfaces should not be neglected in the global analysis, as they may be 
the most critical failure surfaces for some conditions. A failure surface that starts directly behind a SRW and exits 
out the face of the SRW, for a limited region behind the SRW (Surfaces B, C, D, E  Figure 12-2), is labeled an 
“internal compound” failure in this manual. This Internal Compound Stability (ICS) analysis is part of this manual’s 
recommended wall design methodology as described in Section 8. So some compound failure surfaces may be 
addressed by the SRW engineer as a part of their wall design. 

The geotechnical engineer should be aware that an ICS analysis done by the SRW engineer ends a short distance 
behind the wall and only reviews surfaces that exit out the wall’s face.  Thus, a geotechnical engineer performing 
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a global analysis around a SRW should not neglect evaluating possible failure surfaces that either exit out the wall 
face but start well behind the wall or that pass through part of the reinforced soil zone but not through the wall face.  
Both these stated cases involve compound failures surfaces that ICS analysis does not address.  The designer can, 
however, use the results of ICS to evaluate whether a global stability problem exists. As mentioned in Section 5.3.4, 
if all critical failure surfaces begin at the back limit of the design envelope, a comprehensive global stability analysis 
must be performed by the geotechnical engineer.

In addition, tiered or stacked walls can introduce many other possible compound and global failure surfaces. 
Commercially available global stability software that allows for accurate representation of these complex geometries 
and accounts for the wall face and geogrid reinforcements is the typical means of evaluating compound and global 
failure surfaces for tiered walls. 

The number of possible failure surfaces shown in Figure 12-2 and the further complexities with tiered walls 
demonstrate the need for close coordination between the geotechnical engineer and the SRW engineer to ensure 
proper global stability analysis around SRWs.  For this reason, this manual suggests in Section 3.3 that the 
geotechnical engineer be contracted by the owner to have clear, ultimate responsibility for global stability 
analyses for the project site, including in the vicinity of the SRW.  As such, the duties that the geotechnical 
engineers are recommended to be contracted for should include: determining where and when global analysis 
is needed, ensuring that all critical failure surfaces are analyzed, and ensuring the proper soils and groundwater 
properties are used in these analyses.
 

12.4.2:  Effect of Groundwater on Global Stability

Whenever the groundwater is within 0.66H of the bottom of the wall, the global stability of the SRW system should 
be analyzed to assure that an adequate factor of safety exists for deep failures that pass behind the geosynthetic 

Figure 12-2:  Potential Global Stability Failure Surfaces
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reinforcement and for compound failures that pass partially through the reinforced soil mass and partially behind 
the reinforced soil mass.

The global stability analysis result for a 24ft (7.3 m) high wall is illustrated in Figure 12-3A.  No groundwater was 
assumed for this analysis and a minimum stability factor of safety was found.  The effect of groundwater 6 ft (1.8 m) 
below the toe the wall on stability is illustrated in Figure 12-3B.  The global/compound factor of safety drops to a 
value of 1.20 from the 1.31 value with no groundwater.  The calculated factor of safety decreases further, to a value 
of 1.13, when the groundwater level is at the wall toe, as illustrated in Figure 12-3C.  The presence of groundwater, 
whether at the toe or (as in this example) at a depth of H/4 is significant.  The calculated factors of safety for the two 
groundwater cases are unacceptably low, and the wall design needs to be revised to achieve an acceptable level of 
safety against a global/compound failure–for both example cases. 

12.4.3:  Improving Slope Stability

In the event the soil around a SRW does not satisfy a minimum design factor of safety against global instability, 
the site civil engineer may be able to improve the slope stability by changing the wall height or layout, or the 
SRW engineer by increasing the embedment depth, Hemb, or changing the length, strength, or layer spacing of the 
geosynthetic reinforcement. Generally, the most efficient solution is to increase the geogrid length and/or strength 
to adequately intercept predicted failure surfaces behind the wall. Given re-designing the geogrid reinforcement is 
often the best option to address slope stability concerns, in such cases, the geotechnical engineer should closely 
coordinate with SRW engineer to ensure the wall design adequately addresses the potential global issues.

Figure 12-3A:  Dry Condition, Minimum Global/Compound FS = 1.31
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Figure 12-3C:  Water Table at Wall Toe, Minimum Global/Compound FS = 1.13

 

Figure 12-3B:  Water Table 6 ft (1.8 m) Below Wall Toe, Minimum Global/Compound FS = 1.20
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SECTION 13 
CONSTRUCTION OF SEGMENTAL RETAINING WALLS

In addition to proper engineering, long-term structural performance of SRWs is directly influenced by the construction 
procedures.  By adhering to good construction practices SRWs can provide a long service life both functionally 
and aesthetically.  Provided throughout this section are guidelines for the construction of SRWs that, by experience, 
have proven successful.

Section 13.1:  Construction Drawings and Specifications

A successful project always begins with appropriate planning and scheduling.  The preceding sections of this manual 
provide details on the engineering design of SRWs.  By performing those engineering analyses, a set of construction 
plans can be generated detailing the specifics to build the SRW that should include:

●● plan location of SRWs, including location limits of top and bottom of walls;
●● profile dimensions, including elevations of top and bottom of wall and, for reinforced soil walls, elevations, 

strengths and lengths of reinforcement;
●● typical cross‑sections;
●● drainage details, both surface and subsurface features;
●● details (i.e., leveling pad, geosynthetic reinforcement to SRW unit connection for reinforced soil walls), wall 

abutment to other structures, wall termination, and geosynthetic layout around utilities or other obstructions, 
as applicable;

●● construction specifications, consistent with the construction drawings.

Guide specifications for SRWs are provided in Section 14 of this design manual.

Section 13.2:  Construction Details

The layout of curves and corners for SRWs requires planning by both the design engineer and contractor.  The 
varying horizontal setback per course (Δu) among different types of SRW units must be considered prior to 
construction.  This variable will dictate actual layout in plan and elevation.  Leveling pad location will step up 
and back as elevation increases due to the horizontal setback per course (Δu).  The setback and inclination angles 
also create larger or smaller radii (lengths of curved wall) as the SRW increases in height, depending upon either 
a concave or convex orientation.  These potential changes in length and elevations must be accounted for in plan 
and field construction layout of the wall to assure the minimum radius is not encroached upon and that project 
requirements are met.

Caution should be exercised in leveling the leveling pad to ensure intimate contact between the units and aggregate. 
A designer or a contractor may opt to use an unreinforced concrete leveling pad on some projects.  The potential 
disadvantages of using unreinforced concrete for the leveling pad are difficulty in layout of vertical and horizontal 
steps; and maintaining intimate contact between the leveling pad and SRW unit. 

For reinforced soil walls, specific details on placement of geosynthetic reinforcement at wall corners should be 
provided in the construction drawings.  Two typical details are provided as shown in Figures 13-1 and 13-2.

Occasionally, SRWs will encounter utilities or other features that must pass through, under, or within the reinforced 
soil zone.  Special details should be presented in the construction drawings that incorporate the encroaching utility 
or feature.  If the site planning process and time permits, routing utilities around the SRW may be the most prudent 
approach.
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Figure 13-1:  Reinforcement Placement for Concave Corners
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Figure 13-2:  Reinforcement Placement for Convex Corners
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Section 13.3:  Construction Planning

The execution of construction operations for SRWs is dependent on quality surveying information, both to plan and 
field locate its proper position. The existing and proposed finish grades shown on the drawings should be verified 
in the field to ensure the planned design heights are in agreement with topographic information from the project 
grading plan.  Once located in the field, it is good practice to have the retaining wall location verified by the owner 
or the owner’s engineer.  Any changes in wall location made in the field should be duly noted on as‑built drawings 
prior to finishing the project.

Delivery and storage of all retaining wall materials should be coordinated to ensure maximum access to the work 
area and availability during construction.  This is particularly important for soil used to construct the wall that may 
have to be placed with a specified moisture content.  Likewise, the geosynthetic reinforcement should be stored 
according to the manufacturer’s recommendations.

There are two basic topographical conditions in which SRWs may be constructed; “cut” and “fill”.  The differences 
between the two are illustrated in Figure 13-4A.  The construction approach, schedule, and cost will be dictated 
by the type of wall that is required at a site.  Additionally, the effects of construction on existing nearby structures 
and parking areas must be carefully considered for “cut” walls so that foundation support of those structures is not 
undermined or encroached upon in any way.

Section 13.4:  Construction Sequence

The individual characteristics of various SRW units may dictate subtle differences in the construction sequence, 
however, all SRWs must generally follow these five basic steps in the construction process.

●● General wall excavation and leveling pad construction-see Figure 13-4.
●● Setting, leveling, and backfilling the first course of SRW units-see Figure 13-5.
●● Placement and backfilling of SRW units-see Figure 13-6.
●● Placement and tensioning of geosynthetic reinforcement-see Figure 13-7.
●● Placement and compaction of reinforced backfill/retained soil in lifts not to exceed 8 in. (203 mm) in 

thickness.
●● Capping the SRW and finish grading-see Figure 13-8.

By following these basic procedures, SRWs can be expected to perform well for the intended design life of the structure,  
however, to quantitatively evaluate the quality of the constructed SRWs, construction tolerances should be established. 

Section 13.5:  Construction Tolerances

Construction tolerances should be established prior to the start of construction so both the owner and the contractor 
will have the same understanding of what is an acceptable standard of work. These tolerances, normally outlined 
in the construction specifications, should provide a controllable construction erection margin for the contractor.  
Following are some typical tolerance guidelines.

13.5.1:  Dimensional Tolerances for SRW Construction

As with any constructed works, some deviation from construction drawing alignments will occur.    As opposed to 
cast-in-place concrete walls, alignment of SRWs can be simply corrected or modified during construction.  Based 
upon examination of numerous completed SRWs, the following recommended maximum tolerances can be achieved 
with good construction techniques:

●● Vertical control
 ± 1.25 in. (32 mm) maximum over a 10 ft (3 m) distance; 3 in. (75 mm) maximum
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Figure 13-3: Recommended Maximum SRW Construction Tolerances
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●● Horizontal location control 
straight lines:   ± 1.25 in. (32 mm) over a 10 ft (3 m) distance; 3 in. (75 mm) maximum

●● Rotation 
from established plan wall batter:  + 2 °

Horizontal and vertical control can be maintained by surveying the wall during construction.  Control of wall 
rotation during construction can be influenced by SRW unit dimension tolerances, type of soil fill utilized, soil 
compaction techniques and the uniformity in geosynthetic tension applied during backfilling.  Non-uniformity 
in manual pre-tensioning of the reinforcement may result in localized wall movement (i.e. bulging).  Consistent 
construction techniques should be used throughout wall erection.

Careful planning and attention should be paid to the compaction equipment and procedures used during construction.  
Compaction within three feet of the front of wall face should be limited to hand operated equipment, preferably 
a vibrating plate compactor with a minimum weight of 250 lbs (113 kg).  Light weight, low energy equipment 
should be used to compact the first three feet on reinforced fill. This does not, however, reduce the compaction 
density requirements in this zone. It is important that the soil within the first three feet is well compacted in order 
to minimize the potential of settlement of the reinforced fill directly behind the SRW units, which may cause the 
connection between the reinforcement and the SRW unit to be overstressed. The remainder of the reinforced soil 
zone can be compacted with walk‑behind or riding self‑propelled compaction equipment, depending upon soil type 
and available operating area.  Non-uniform compaction procedures can result in vertical and horizontal alignment 
control problems.  Upon completion of the wall, landscaping equipment and other vehicles should be kept at least 
five feet behind the wall face.



186� Design Manual for Segmental Retaining Walls 3rd Edition 

Figure 13-4:  Construction Sequence Step 1–Excavation and Leveling Pad
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Figure 13-5:  Construction Sequence Step 2–First Course of SRW Units
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Figure 13-6:  Construction Sequence Step 3–Placement and Backfilling of SRW Units

1. Ensure  the gravel fill is level with, or slightly below the top of SRW unit 
below.

2. Clean debris off top of unit.
3. Place SRW unit shear connectors if applicable.
4. Move SRW unit to engage shear connectors and establish proper setback, 

consistent with manufacturer's recommendations.

A.  Installing Successive Courses of SRW Units

B.  Fill Placement and Compaction

1. Use gravel fill to fill openings in and between SRW units as required.
2. Place gravel fill behind and up to height of SRW unit to continue wall face drain.  

Install Geotextile if required.
3. Place and compact infill soil behind wall drain.
4. Compact gravel fill and infill soil.

Bench cut

Compacted 
common 
backfill

Setback
Move forward to 
secure proper setback

Topsoil

Gravel fill

Compacted lift thickness, 
8 in. (203 mm) max.
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Figure 13-7:  Construction Sequence Step 4–Geosynthetic Reinforcement Installation

A.  Placement of Geosynthetic Reinforcement

1. Ensure wall face gravel fill is level with, or slightly above the top of SRW 
unit.

2. Clean debris off top of unit.
3. Cut geosynthetic reinforcement to design length L as shown on plans and 

install with strength direction perpendicular to wall face.
4. Place shear connectors, if applicable, as recommended by the manufacturer.
5. Place SRW unit on top of geosynthetic.
6. Move SRW unit to engage shear connectors and establish proper setback.

1. Pull geosynthetic reinforcement taut, using uniform tension, hold or stake to 
maintain tension throughout fill placement process.

2. Place gravel fill for wall face drain in and between SRW units as required.
3. Place infill soil.
4. Compact infill soil.
5. Compact gravel fill.
6. Place remainder of gravel fill.

B.  Backfilling over Geosynthetic Reinforcement

Compacted 
common 
backfill

Topsoil

Setback

Gravel fill

Geosynthetic 
reinforcement

Notes:
1. Sequence of backfilling steps may vary and are dependent 

on type of SRW unit and geosynthetic reinforcement used.
2. Alignment of straight walls should be check every other 

course.

Pull tight, 
stake or hold

Tension

Compacted 
reinforced 
soil zoneL, see design 

cross-section
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Figure 13-8:  Construction Sequence Step 5–Capping and Grading

A.  Completed Gravity SRW

B.  Completed Reinforced SRW

1. Continue wall to full height using steps A and B from Figures 13-6 and 13-7.
2. Install SRW cap/coping unit (optional), secure per manufacturer's 

recommendations.
3. Place and compact final backfill.
4. Finish grade for positive drainage away from wall face, drainage swale is optional.
5. Place topsoil and vegetate slopes above and around wall terminations.

Compacted 
common 
backfill

Compacted reinforced 
(infill) soil zone

Gravel fill

Drainage swale 
(optional)

SRW unit

Topsoil, 8 in. 
(203 mm)

Cap unit 
(optional)

Compacted infill soil

Cap unit 
(optional)

SRW unit

Drainage swale 
(optional)

Slope for 
positive 
drainage

Topsoil, 8 in. 
(203 mm)
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13.5.2:  Materials Acceptance 

SRW units and geosynthetic reinforcement materials delivered to the site should be accompanied with a 
manufacturer’s certification indicating the material meets or exceeds specified minimum physical properties.  The 
SRW specifications should clearly state the minimum physical properties of the SRW units and the geosynthetic 
reinforcement manufacturer should have submitted an established correlation between design properties and index/
physical properties.  Materials below the required strengths, index properties and/or dimensions may be rejected 
as unsuitable. There are provisions in ASTM C1372 to evaluate materials with regard to appearance or inability to 
perform or be utilized in construction. 

13.5.3:  Earthwork Monitoring and Testing

A geotechnical engineer should inspect and test the wall foundation and cut areas after excavation is completed to 
assure that design bearing conditions are met and verify groundwater design assumptions.  The geotechnical engineer 
should also monitor fill placement and test compacted soil materials to ensure proper soil type and compaction 
specifications are being achieved.  Typically, compaction requirements are 95% of maximum standard Proctor dry 
density (ASTM D 698 [Ref. 75] or AASHTO T‑99) or 90 to 92% of maximum modified Proctor dry density (ASTM 
D 1557 [Ref. 76] or AASHTO T‑180).  The moisture content for compaction should be controlled within minus 
three to plus one percentage points of the optimum moisture content, for most soils. Finished lift thickness should 
not exceed the height of unit Hu and should be limited to 6 to 8 in. (152 to 203 mm) for clean granular or fine grained 
(i.e., clay, clayey, silt and silty) soils.  For units smaller than 6 in. (152 mm), utilize some convenient multiple of unit 
height without exceeding the maximum.

Tolerances for the soils related construction operations of SRWs are usually controlled to meet a minimum 
requirement as stated above.  Since the entire SRW design is predicated on the soil strength parameters, complete 
and thorough earthwork construction is essential to achieve satisfactory long-term performance of the SRW system.  
The geotechnical engineer should have final control over the suitability of soil and earthwork operations for the 
SRW construction.

13.5.4:  Geosynthetic Reinforcement

The owner’s engineer should verify the reinforcement location, elevation, length and tensioning of the geosynthetic 
reinforcement in addition to ensuring that the material meets or exceeds specified minimum property requirements.  
Since geosynthetic reinforcement type, grade, or lengths may change across the extent and height of the wall, 
competent construction monitoring should verify that the contractor’s placement of geosynthetic reinforcement is 
in accordance with construction plans and specifications. 

13.5.5:  Gapping and Cracking of Concrete Units

It is not uncommon for blocks to crack and/or gap, especially at the location of tight outside radii.  Small amounts of 
movements in the face are not necessarily a sign of imminent failure, especially if horizontal and vertical alignment 
is maintained.  Precautions can be taken to help reduce cracking and gapping.  The most effective precaution is to 
provide a thicker gravel fill area directly behind the block in the area of the radius.

13.5.6: Incidental Movement

Sometimes small movements are an indicator that water is infiltrating the reinforced mass and should be reviewed.  
If more than incidental water is infiltrating the reinforced mass and has not been accounted for in the design, 
steps should be taken to identify the source and redirect the water away from the wall and reinforced mass.  Some 
movement may be anticipated, especially in the first eighteen months after construction.
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Section 13.6:  Post Construction Activities

Retaining walls are often the first structures to be constructed, especially on newly developed sites.  Construction 
of building structures, roads, parking areas, and utilities (to name a few) usually follow weeks, sometimes months 
after the completion of the wall.  This sometimes leads to unforeseen conditions at both the top and toe of the wall.  
Long-term storage of materials and equipment directly behind the wall, excavation at the top and toe of the wall, 
blocked drainage outlet structures, and clogged sediment control features are all examples of post retaining wall 
construction activities that may negatively affect the stability of the wall.  Unfortunately, the SRW engineer and 
retaining wall installer are no longer present on site to monitor these activities, so it becomes the responsibility of 
the owner or his representative to ensure that activities that can lead to such problems do not occur.
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SECTION 14
SAMPLE SPECIFICATIONS

The following sample specification illustrates a method of incorporating a SRW into a construction project.  
Traditional method and materials specifications designating material and installation requirements are presented 
in Section 14.1.  Specifications for segmental retaining wall units, geosynthetic reinforcement and gravel fill are 
presented.  The method specification approach requires that a site specific design be performed by the owner’s 
engineer.  Designs should be performed such that specified SRW and geosynthetic material properties can be met 
by a number of manufacturer’s products using the properties of the project soils.  SRW and geosynthetic properties 
are then specified as the minimum properties that must be met.  The advantage of this type of specification is that 
the owner’s engineer is in control of the design.  

Section 14.1:  Material Specification

For clarity, the following sample specifications were kept in inch-pound units, please refer to the conversion tables 
to transform to metric system.

A method specification for construction of segmental retaining walls follows. The SRW unit and gravel fill 
specifications are applicable to both conventional and reinforced soil walls.  The geosynthetic reinforcement 
specification is only applicable to reinforced soil walls.  

Shaded areas of text indicate project-specific data should be inserted at these locations by the specifier/designer.
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SPECIFICATION FOR SEGMENTAL RETAINING WALL MATERIALS

PART 1:  GENERAL

1.01	 Description

Work shall consist of furnishing all materials, labor, equipment, and supervision to install a segmental retaining wall 
system in accordance with these specifications and in reasonably close conformity with the lines, grades, design and 
dimensions shown on the plans or as established by the Owner or Owner’s Engineer.

1.02	 Related Work

A.	 Section	 Section–Information Available to Bidders:  Geotechnical Report
B.	 Section	 Section–Testing and Inspection Services
C.	 Section	 Section–Site Preparation
D.	 Section	 Section–Earthwork

1.03	 Reference Standards

	 A.	 Engineering Design
1.	 NCMA Design Manual for Segmental Retaining Walls 3rd Edition 
2.	 ASTM D 6638 – Standard Test Method for Determining the Connection Strength Between 

Geosynthetics Reinforcement and Segmental Concrete Units [Ref. 70]
3.	 ASTM D 6916 – Standard Test Method for Determining the Shear Strength Between Segmental 

Concrete Units [Ref. 71]

B.	 Segmental Retaining Wall Units
1.	 ASTM C 140 – Standard Test Methods for Sampling and Testing Concrete Masonry Units and 

Related Units [Ref. 78]
2.	 ASTM C 1262 – Standard Test Method for Evaluating the Freeze-Thaw Durability of 

Manufactured Concrete Masonry Units and Related Concrete Units [Ref. 79]
3.	 ASTM C 1372 – Standard Specification for Dry-Cast Segmental Retaining Wall Units 

[Ref. 80]

C.	 Geosynthetic Reinforcement
1.	 ASTM D 4595 – Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width 

Strip Method [Ref. 81]
2.	 ASTM D 5262 – Standard Test Methods for Evaluating the Unconfined Tension Creep and 

Creep Rupture Behavior of Geosynthetics [Ref. 82]
3.	 ASTM D 5321 – Standard Test Method for Determining the Coefficient of Soil and Geosynthetic 

or Geosynthetic and Geosynthetic Friction by the Direct Shear Method [Ref. 83]
4.	 ASTM D 5818 – Standard Practice for Exposure and Retrieval of Samples to Evaluate 

Installation Damage of Geosynthetics [Ref. 84]
5.	 ASTM D 6637 – Standard Test Method for Determining Tensile Properties of Geogrids by the 

Single or Multi-Rib Tensile Method [Ref. 85]
6.	 ASTM D 6706 – Standard Test Method for Measuring Geosynthetic Pullout Resistance in Soil 

[Ref. 86]
7.	 ASTM D 6992  – Standard Test Method for Accelerated Tensile Creep and Creep-Rupture of 

Geosynthetic Materials Based on Time-Temperature Superposition Using Stepped Isothermal 
Method [Ref. 110]
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D.	 Soils
1.	 ASTM D 422 – Standard Test Method for Particle-Size Analysis of Soils [Ref. 87]
2.	 ASTM D 698 – Standard Test Method for Laboratory Compaction Characteristics of Soil 

Using Standard Effort (12 400 ft-lbf/ft3(600 kN-m/m3)) [Ref. 75]
3.	 ASTM D 1556 – Standard Test Method for Density and Unit Weight of Soil in Place by the 

Sand-Cone Method [Ref. 88]
4.	 ASTM D1557 – Standard Test Method for Laboratory Compaction Characteristics of Soil 

Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)) [Ref. 76]
5.	 ASTM D 2487 – Standard Practice for Classification of Soils for Engineering Purposes 

(Unified Soil Classification System) [Ref. 89]
6.	 ASTM D 6938 – Standard Test Method for In-Place Density and Water Content of Soil and 

Soil-Aggregate by Nuclear Methods (Shallow Depth) [Ref. 90]
7.	 ASTM D 4318 – Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index 

of Soils [Ref. 91]
8.	 ASTM D 6913 – Standard Test Methods for Particle-Size Distribution (Gradation) of Soils 

Using Sieve Analysis [Ref. 92]
9.	 ASTM G 51 – Standard Test Method for Measuring pH of Soil for Use in Corrosion Testing 

[Ref. 93]

E.	 Drainage Pipe
1.	 ASTM F 405 – Standard Specification for Corrugated Polyethylene (PE) Pipe and Fittings 

[Ref. 94]
2.	 ASTM F 758 – Standard Specification for Smooth-Wall Poly(Vinyl Chloride) (PVC) Plastic 

Underdrain Systems for Highway, Airport, and Similar Drainage [Ref. 95]

F.	 Where specifications and reference documents conflict, the Owner’s Engineer shall make the final 
determination of applicable document.

1.04	 Approved Segmental Retaining Wall Systems

A.	 Suppliers of segmental retaining wall system material components shall have demonstrated 
experience in the supply of similar size and types of segmental retaining walls on previous projects, 
and shall be approved by the Owner’s Engineer.  Each supplier must be approved two weeks prior 
to bid opening.  Suppliers currently approved for this work are:

Segmental Wall Units
1.	  
2.	  
3.	  

		  Geosynthetic Reinforcements
1.	  
2.	  
3.	  
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1.05	 Submittals

A.	 Material Submittals – The Contractor shall submit manufacturer’s certifications, 30 days prior to 
the start of work, stating that the SRW units, geosynthetic reinforcement, reinforced backfill, and 
gravel fill meet the requirements of Part 2.0 of this specification.  The Contractor shall provide a list 
of successful projects with references showing that the installer for the segmental retaining wall is 
qualified and has a record of successful performance. 

1.06	 Delivery, Storage, and Handling

A.	 The Contractor shall inspect the materials upon delivery to assure that proper type and grade of 
material has been received.

B.	 The Contractor shall store and handle materials in accordance with manufacturer’s recommendations 
and in a manner to prevent deterioration or damage due to moisture, temperature changes, 
contaminants, corrosion, breaking, chipping or other causes.

C.	 The Contractor shall protect the materials from damage.  Damaged material shall not be incorporated 
into the segmental retaining wall.
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PART 2:  MATERIAL

2.01  Concrete Segmental Retaining Wall Units

A.	 Concrete segmental units shall conform to the requirements of  ASTM C 1372 [Ref. 80] and have a 
minimum net average 28 days compressive strength of 3,000 psi and a maximum absorption of 13 
pcf (for normal weight) as determined in accordance with ASTM C 140 [Ref. 78].  For areas subject 
to detrimental freeze-thaw cycles, as determined by the Owner or Owner’s Engineer, the concrete 
shall have adequate freeze/thaw protection and meet the requirements of  ASTM C 1372 [Ref. 80] 
when tested in accordance with ASTM C1262 [Ref. 79].

B.	 All units shall be sound and free of cracks or other defects that would interfere with the proper 
placing of the unit or significantly impair the strength or permanence of the construction.  Any cracks 
or chips observed during construction shall fall within the guidelines outlined in  ASTM C 1372 
[Ref. 80].

C.	 SRW units dimensions shall not differ more than + 1/8 in., as measured in accordance with ASTM 
C140 [Ref. 78].  This tolerance does not apply to architectural surfaces, such as split faces.

 
D.	 SRW units shall match the color, surface finish, and dimension for height, width, depth, and batter 

as shown on the plans.

E.	 If pins or clips are used by the retaining wall supplier to interconnect SRW units, they shall consist 
of a nondegrading polymer or galvanized steel and be made for the express use with the SRW units 
supplied.

F.	 Cap adhesive shall meet the requirements of the SRW unit manufacturer.

2.02	 Geosynthetic Reinforcements

A.	 Geosynthetic Reinforcements shall consist of high tenacity PET geogrids, HDPE geogrids, or 
geotextiles manufactured for soil reinforcement applications.  The type, strength and placement 
location of the reinforcing geosynthetic shall be as shown on the plans.  The design properties of 
the reinforcement shall be determined according to the procedures outlines in this specification and 
the NCMA Design Manual for Segmental Retaining Walls (3rd Edition, 2009)  Detailed test data 
shall be submitted to the Owner’s Engineer for approval at least 30 days prior to construction and 
shall include tensile strength (ASTM D 4595 [Ref. 80] or ASTM D 6637 [Ref. 85]), creep (ASTM 
D 5262 [Ref. 82]), site damage (ASTM D 5818 [Ref. 84]), durability ( FHWA guidance (FHWA 
NHI-00-043, FHWA NHI-00-044)), pullout (ASTM D 6706 [Ref. 86]), direct shear (ASTM D 5321 
[Ref. 74] and connection (ASTM D 6638 [Ref. 70]) test data. 
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Included with the raw test data shall be a report that shows that the proposed geosynthetic reinforcements have the 
following minimum properties:

Property Geosynthetic Reinforcement
Type 1 Type 2 Type 3

Long-Term Design Strength - 
LTDS (lb/ft)

Coefficient of Pullout 
Interaction Ci

Coefficient of Direct
Sliding - Cds

Calculation of the allowable reinforcement tension shall use the following method:

The Long-Term Design Strength (LTDS) at the end of the service life shall consider the time-temperature creep 
rupture characteristics of the reinforcement, environmental degradation, construction induced damage, and an 
overall factor of safety.

 = 
    

ult

D ID CR

TLTDS
RF RF RF× ×

where:

Tult 	 =	 Ultimate (or yield tensile strength) from wide width tensile strength tests (ASTM D 6637 [Ref. 
85] for geogrids or ASTM D 4595 [Ref. 80] for geotextiles), based on minimum average roll 
value (MARV) for the product.

RFD 	 =	 Durability reduction factor is dependent on the susceptibility of the geosynthetic to attack by 
microorganisms, chemicals, thermal oxidation, hydrolysis and stress cracking, and can vary 
typically for 1.05 to 2.0.  The minimum reduction factor shall be 1.05.

RFID 	 =	 Installation damage reduction factor can range from 1.05 to 3.0, depending on backfill gradation 
and product mass per unit weight.  The minimum reduction factor shall be 1.1 to account for 
testing uncertainties.

RFCR	 =	 Creep reduction factor is the ratio of the ultimate strength (Tult) to the creep limited strength from 
laboratory creep tests for each product or product family, and can vary typically from 1.50 to 
5.0.

	
In no case shall the product RFID × RFD × RFCR be less than 2.0.

2.03	 Drainage Pipe

A.	 The drainage collection pipe shall be a perforated or slotted  PVC or corrugated HDPE pipe.  The 
pipe and gravel fill may be wrapped with a geotextile that will function as a filter.

B.	 Drainage pipe shall be manufactured in accordance with ASTM F 405 [Ref. 94] or ASTM  F 758 
[Ref. 95].
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2.04	 Gravel fill

Gravel fill shall be a clean crushed stone or granular fill meeting the following gradation as determined in 
accordance with ASTM D 422 [Ref. 87]:

	 Sieve Size	 Percent Passing
	 1 in. 	 100
	 3/4  in.  	 75 - 100
	 No. 4	 0 - 60
	 No. 40	 0 - 50
	 No. 200	 0 - 5

2.05	 Reinforced Backfill

A.	 The reinforced backfill shall be free of debris and consist of one of the following inorganic USCS 
soil types: GP, GW, SW, SP, SM, meeting the following gradation as determined in accordance with 
ASTM D 422 [Ref. 87].

	 Sieve Size	 Percent Passing
	 1 in.	 100
	 No. 4 	 100 - 20
	 No. 40	 0 - 60
	 No. 200	 0 - 351

The maximum size should be limited to 1.0 in. for geosynthetic reinforced soil SRWs unless tests 
have been performed to evaluate potential strength reduction in the geosynthetic due to installation 
damage.	

The plasticity of the fine fraction of the reinforced soil shall be less than 202.

B.	 The pH of the backfill material shall be between 3 and 9 when tested in accordance with ASTM G 51 
[Ref. 93].

2.06	 Geotextile Filter

Drainage geotextile shall have the following minimum properties or shall meet the criteria recommended by the 
Wall Design Engineer.

AOS			   ASTM D 4751 [Ref. 96]	                  
Grab Tensile		  ASTM D 4632 [Ref. 97]	
Trap Tear		  ASTM D 4533 [Ref. 98]
Water Flow Rate	 ASTM D 4491 [Ref. 99]	
Puncture		  ASTM D 4833 [Ref. 100]	

1	 Cohesionless, coarse-grained soils, are preferred; finer soils with low-plasticity (i.e., PI of the finer fraction is 
less than 20) may be used provided the following four additional design criteria are implemented:
(a)	 Proper internal drainage is installed.
(b)	 Only soils with low to moderate frost heave potential are utilized.
(c)	 The internal cohesive shear strength parameter c is conservatively ignored for stability analysis.
(d)	 The final design for critical walls is checked by a qualified geotechnical engineer to ensure that the use of 

cohesive soils does not result in unacceptable time-dependent movement of the SRW system.
2	 For taller applications the PI may be reduced to PI < 5 to 10.
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PART 3:  CONSTRUCTION

3.01	 Construction Observation

A.	 The Owner or Owner’s Engineer should verify the materials supplied by the contractor meet all the 
requirements of the specification.  This includes all submittals and proper installation of the system.

B.	 The Contractor’s field construction supervisor shall have demonstrated experience and be qualified 
to direct all work at the site.

3.02	 Excavation

A.	 The Contractor shall excavate to the lines and grades shown on the plans.  The Contractor shall take 
precautions to minimize over-excavation.  Excavation support, if required, shall be designed by the 
Contractor.

3.03	 Foundation Preparation

A.	 Following excavation for the leveling pad and the reinforced soil zone, foundation soil shall be 
examined by the Owner’s Geotechnical Engineer to assure the actual foundation soil strength meets or 
exceeds the assumed design bearing strength.  Soils not meeting the required strength shall be removed 
and replaced with soil meeting the design criteria, as directed by the Owner’s Geotechnical Engineer.

3.04	 Leveling Pad Preparation

A.	 A minimum 6 in. thick layer of compacted granular material shall be placed for use as a leveling 
pad up to the grades and locations as shown on the construction drawings.  The granular base shall 
be compacted to provide a firm, level bearing pad on which to place the first course of concrete 
segmental retaining wall units.  A leveling pad consisting of 6 in. (minimum) thick lean, unreinforced 
concrete may be used at the wall contractor’s option, or if so detailed on the plans.  The leveling pad 
should extend a minimum of 6 in. from the toe and from the heel of the SRW unit. 

3.05	 SRW and Geosynthetic Reinforcement Placement

A.	 All materials shall be installed at the proper elevation and orientation as shown in the wall details on 
the construction plans or as directed by the Owner’s Engineer.  The concrete segmental wall units 
and geosynthetic reinforcement shall be installed in general accordance with the manufacturer’s 
recommendations.  The drawings shall govern in any conflict between the two requirements.

B.	 Overlap or splice connections of the geosynthetic in the design strength direction shall not be 
permitted.  The design strength direction is that length of geosynthetic reinforcement perpendicular to 
the wall face and shall consist of one continuous piece of material.  Adjacent sections of geosynthetic 
shall be placed in a manner to assure that the horizontal coverage shown on the plans is provided.

C.	 Geosynthetic reinforcement should be installed under tension.  A nominal tension shall be applied 
to the reinforcement and maintained by staples, stakes, or hand tensioning until the reinforcement 
has been covered by at least 6 inches of soil fill.

D.	 Broken, chipped, stained or otherwise damaged units shall not be placed in the wall unless they are 
repaired, and the repair method and results are approved by the SRW Design Engineer.



Sample Specifications	 201

3.06	 Backfill Placement

A.	 The reinforced backfill shall be placed as shown in construction plans in maximum compacted lift 
thickness of  8  in. and shall be compacted to a minimum 95% of standard Proctor density (ASTM 
D 698 [Ref. 75]) at a moisture content within -1% to +3% of optimum.  Backfill shall be placed, 
spread and compacted in such a manner that minimizes the development of wrinkles or movement 
of the geosynthetic reinforcement and the wall facing units.

B.	 Only hand-operated compaction equipment shall be allowed within 3 ft of the front of the wall face. A 
maximum compacted lift thickness of  8  in. shall be used in this zone.  Soil density in this area shall 
not be less than 95% standard Proctor density without affecting wall alignment.  Soil density testing 
in this area should be verified by field density testing.

C.	 Construction equipment shall not be operated directly on the geosynthetic reinforcement.  A 
minimum backfill thickness of 6 in. is required prior to operation of tracked vehicles over the 
geosynthetic reinforcement.  Turning of tracked vehicles should be kept to a minimum to prevent 
displacing the fill and damaging or moving the geosynthetic reinforcement.

D.	 At the end of each day’s operation, the wall contractor shall slope the last level of backfill away 
from the wall facing to direct runoff of rainwater away from the wall face.  The general contractor 
is responsible for ensuring surface runoff from adjacent areas is not allowed to enter the wall 
construction area.

3.07	 Gravel Fill and Drainage Placement

A.	 Gravel fill shall be placed to the minimum finished thickness and widths shown on the construction 
plans.

B.	 Drainage collection pipes shall be installed to maintain gravity flow of water outside of the reinforced 
soil zone.  The drainage collection pipe should daylight into a storm sewer manhole or along a slope 
at an elevation lower than the lowest point of the pipe within the aggregate drain.

C.	 The main collection drain pipe, just behind the block facing, shall be a minimum of 3 in. in diameter.  
The secondary collection drain pipes should be sloped a minimum of two percent to provide gravity 
flow into the main collection drain pipe.  Drainage laterals shall be spaced at a maximum 50 ft 
spacing along the wall face.	

3.08	 Cap Block Placement

A.	 The cap block and/or top SRW unit shall be bonded to the SRW units below using cap adhesive 
described in Part 2.01F.  The block shall be dry and swept clean prior to adhesive placement.
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PART 4:  MEASUREMENT AND PAYMENT

4.01	 Measurement

A.	 The unit of measurement for furnishing the segmental retaining wall system shall be the vertical 
square foot of wall surface from the top of the leveling pad to the top of the wall, including coping.  
The quantity to be paid shall include supply and installation of the segmental retaining wall system.  
Excavation of unsuitable materials and replacement with select fill, as directed and approved in 
writing by the Owner or Owner’s Engineer shall be paid for under separate pay items.

4.02	 Payment

A.	 The accepted quantities of segmental retaining wall system will be paid for per vertical square foot 
in place as measured from the top of the leveling pad to the top of wall (including coping) block.  
The quantities of the segmental retaining wall system as shown on plans or as approved by the 
Owner or Owner’s Engineer shall be used to determine the area supplied.  Payment will be made 
under:

		  Pay Item				    Pay Unit
		  Geosynthetic Reinforced SRW		  SQ. FT.
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APPENDIX A
CONVENTIONAL SINGLE DEPTH SRW

GRAVITY WALL SAMPLE PROBLEM
STATIC Analysis 
INPUT INFORMATION

WALL GEOMETRY MODULAR BLOCK PARAMETERS
exposed wall height: He 2.5 ft⋅:= block height: Hu 0.667 ft⋅:=

block depth: Wu 1.0 ft⋅:=wall embedment: Hemb .5 ft⋅:=

cap height: Hcu 0.3125 ft⋅:=
total wall height: H' He Hemb+:= H' 3 ft⋅=

unit weight of
concrete: γu 120

lb

ft 3
:=

number of block
courses:

N ceil
H'
Hu

⎛
⎜
⎝

⎞
⎠

:= N 5=
setback of unit: sbu 1in:=

Final total  wall
height: H N Hu⋅:= H 3.34 ft⋅=

retaining wall
incliation :

ω atan
sbu
Hu

⎛
⎜
⎝

⎞

⎠
:=

SURCHARGE PARAMETERS
ω 7.121 deg⋅=

Live load surcharge: ql 0
lb

ft 2
:=

BACKSLOPE PARAMETERS
Dead load surcharge: qd 0

lb

ft 2
:= backslope angle: β 0 deg⋅:=

Make sure that the surcharge loading is always initiated
either directly behind the wall.

uH

Wu

1

2

3

4

5

H
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Definitions:

Determine the wall geometry variables needed for External Stability calculations

Input horizontal distance from back of wall face units to crest of slope βoffset( ):
Note: If considering an infinite slope, enter a large value for βoffset

βoffset 200.0 ft⋅:=

SOIL PARAMETERS
RETAINED SOIL FOUNDATION SOIL LEVELING PAD SOIL

friction
angle:

ϕr 34 deg⋅:= friction
angle:

ϕf 30 deg⋅:= friction
angle:

ϕd 40 deg⋅:=

unit
weight:

γr 115
lb

ft 3
⋅:= unit

weight:
γf 115

lb

ft 3
⋅:= unit

weight:
γd 125

lb

ft 3
:=

cohesion of 
foundation
soil:

coefficient of
interaction
between
block and
leveling pad:

cf 0
lb

ft 2
⋅:= μb 0.7:=

In this example, the vertical components of loads are not applied

SRW UNIT INTERFACE SHEAR DATA
apparent minimum ultimate 
 shear capacity between
 segmental units:

au 1100
lb
ft
⋅:=

apparent angle of friction 
between segmental units
for peak shear capacity:

λu 35 deg⋅:=
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3
2 rc

c
φ

δ =(NCMA EQ 6-2) δc 22.68 deg⋅=

ββ tanoffsetsh =(NCMA EQ 7-7) hs 0 ft⋅=

βtan2max Hh con =(NCMA EQ 6-4) hmaxcon 0 ft⋅=

⎟
⎠
⎞

⎜
⎝
⎛=

H
hs

con 2
arctanβ cons hh max≤(NCMA EQ 6-5A) if 

ββ =con
cons hh max>(NCMA EQ 6-5B) if 

βcon 0 deg⋅=

2

2

2

)cos()cos(
)sin()sin(

1)cos(cos

)(cos

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
−+

+−

+
=

conc

conrcr
c

r
aconK

βωδω
βφδφ

δωω

ωφ(NCMA EQ 6-1)
Kacon 0.2072=

Determine the horziontal and vertical componentns of active earth pressure coefficient :

( )ωδ −= caconaHcon KK cos KaHcon 0.2=

( )ωδ −= caconaVcon KK sin KaVcon 0.056=

Determine External Horizontal Active Earth Force(Pa):

Resultant horizontal and vertical forces due to active earth pressure from soil self-weight:

2)(5.0 HKP raHconsHcon γ=(NCMA EQ 6-9) PsHcon 127.7
lb
ft
⋅=

2)(5.0 HKP raVconsVcon γ=(NCMA EQ 6-14) PsVcon 35.5
lb
ft
⋅=
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Resultant horizontal and vertical forces due to active earth pressure from uniform surcharge (P qd & Pql):

( ) )(HKqP aHcondqdHcon =(NCMA EQ 6-11) PqdHcon 0
lb
ft
⋅=

( ) )(HKqP aHconlqlHcon =
PqlHcon 0

lb
ft
⋅=(NCMA EQ 6-12)

( ) )(HKqP aVcondqdVcon =(NCMA EQ 6-15) PqdVcon 0
lb
ft
⋅=

( ) )(HKqP aVconlqlVcon =(NCMA EQ 6-16) PqlVcon 0
lb
ft
⋅=

External horizontal & vertical active earth forces (PaH & PaV):

qlHconqdHconsHconacong PPPP ++=(NCMA EQ 6-13) PaHcon 127.7
lb
ft
⋅=

qlVconqdVconsVconaVcon PPPP ++=(NCMA EQ 6-17) PaVcon 35.5
lb
ft
⋅=

ANALYZE BASE SLIDING
Weight of concrete column (WW):

uuW WHW γ=(NCMA EQ 6-20) WW 400
lb
ft
⋅=

Sliding resistance at base of gravity SRW (Rsc)

dqdVconsVconWbsc PPWR φµ tan]][[ ++=(NCMA EQ 6-21) Rsc 235.1
lb
ft
⋅=

Factor of safety for sliding (FSsldg):

aHcon

sc
con P

R
FSsl =(NCMA EQ 6-22) FSslcon 1.841=
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ANALYZE OVERTURNING

Calculate the resisting moment (Mr):

Moment arm for the weight of the reinforced infill zone (Xri):

( )[ ] U
u

con H
W

Xw ∆−+= 5.0tan5.0
2

ω(NCMA EQ 6-24)
Xwcon 0.67 ft⋅=

Resisting moment due to vertical components :

)tan
2

()tan
3

()( ωω HWPHWPXwWMr uqdVconusVconconWcon ++++= Mrcon 267 lb⋅=(NCMA EQ 6-23)

Driving moment arm (Mo):

2
)(

3
HPPHPMo qlHconqdHconsHconcon ++=(NCMA EQ 6-25)

Mocon 142 lb⋅=

Factor of safety for overturnig (FSot):

con

con
con Mo

Mr
FSot =(NCMA EQ 6-26) FSotcon 1.88=

ANALYZE BEARING PRESSURE
Eccentricity  of resultant vertical bearing force (e):

W

cWcon
con W

eWMo
e

)(−
=(NCMA EQ 6-29)

econ 0.188 ft⋅=

uconc WXwe 5.0−=

clpuc ehWB 2)( −+=(NCMA EQ 6-28)

c

sVconqlVconqdVconW
ac B

PPPW
Q

+++
=

)( Qac 356
lb

ft 2
⋅=(NCMA EQ 6-27)
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Ultimate bearing capacity of foundation soils (Qult):

cfqembfgfultcon NcNHBNQ ++′= γγγ5.0
Qultcon 2506

lb

ft 2
⋅=

Applied bearing stress (Qa):

Determine the Factor of Safety Bearing Capacity (FSbc):

ac

ultcon
con Q

Q
FSbc = FSbcg 7=

ANALYZE INTER-UNIT SLIDING

2)(5.0 kraVconsVcon ElevHKP
k

−= γ

( ) )( kaVcondqdVcon ElevHKqP
k

−=

)( kuuW ElevHWW
k

−= γ(NCMA EQ 6-31)

Calculate the shear capacity at E1 (Vuk):

uWuu kk
WaV λtan+=(NCMA EQ 6-30)

In this example, the Shear Capacity is defined as follows:

deg35tan/1100 )(nWu WftlbV
k

+= Vuk

1156
1212

1268

1324

1380

lb
ft
⋅

=

2)(5.0 HKP raHconsHconk
γ= PsHgk

5.1
20.4

46

81.7

127.7

lb
ft
⋅

= PqdHgk

0
0

0

0

0

lb
ft
⋅

= PqlHgk

0
0

0

0

0

lb
ft
⋅

=

( ) )(HKqP aHcondqdHconk
=

( ) )(HKqP aHconlkqlHcon =

FSintsldgk

226.4
59.3

27.6

16.2

10.8

=

kkk

k

qlHgqdHgsHg

u
k PPP

V
sldgFS

++
=int(NCMA EQ 6-32)
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SEISMIC Analysis
In this example, the displacement analysis is not considered

maximum earthquake
acceleration factor:

A 0.2:=

2
Akhext =(NCMA EQ 9-23) kh.ext 0.1=

seismic inertia angle:

( )hextext ka tan=θ(NCMA EQ 9-26) Θext 5.711 deg⋅=

Determine total seismic erath pressure coefficient and dyn component, horizontal and vertical components

dynamic earth pressure coefficient:

2

2

2

)cos()cos(
)sin()sin(

1)cos(coscos

)(cos

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−

−−+
++−

−+
=

conextc

extconrgr
extcext

extr
aEconK

βωθωδ
θβφδφ

θωδωθ

θωφ(NCMA EQ 9-25)

KaEcon 0.266=

∆Kdyncon 0.059=

( ) ( )ωδωδ −∆=−−=∆ cdyncaconaEcondynH KKKK coscos)((NCMA EQ 9-28) ∆KdynHcon 0.056=

( ) ( )ωδωδ −∆=−−=∆ cdyncaconaEcondynV KKKK sinsin)((NCMA EQ 9-33) ∆KdynVcon 0.016=

Determine total seismic earth pressures due to soil, horizontal and vertical components

25.0 HKP raEHconaEH γ=(NCMA EQ 9-29) PaEH 164
lb
ft
⋅=

25.0 HKP raEVconaEV γ=(NCMA EQ 9-34) PaEV 46
lb
ft
⋅=

Determine dynamic component of earth pressure, horizontal and vertical components

sHaEHrdynHdynH PPHKP −=∆=∆ 25.0 γ ∆PdynHcon 36
lb
ft
⋅=(NCMA EQ 9-30)

sVaEVrdynVdynV PPHKP −=∆=∆ 25.0 γ(NCMA EQ 9-35) ∆PdynVcon 10
lb
ft
⋅=

Determine total seismic earth pressures due to soil and surcharges, horiz and vert components

dynHqdHsHaEHcon PPPP ∆++= 5.0(NCMA EQ 9-31)
PaEHcon 146

lb
ft
⋅=

dynVqdVsVaEVcon PPPP ∆++= 5.0
PaEVcon 41

lb
ft
⋅=
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ANALYZE SEISMIC BASE SLIDING
determine sliding to resistance at unit/pad interface, including vert comp of dyn load

( ) φµφµ tan 0.5tan5.0)( dynVqdVsVWbdynVbscdynsc PPPWPRR ∆+++=∆+=(NCMA EQ 9-36)

Rsc_seismic 235.065
lb
ft
⋅=determine inertial force fo wall face

PIRcon kh.ext WW⋅:= PIRcon 40
lb
ft
⋅=

PaEHcon 145.716
lb
ft
⋅=

 FS against seismic sliding

wexthdynVqdHsH

dynsc
seismicsl WkPPP

R
FS

)(

)(
)( 5.0 +∆++
=(NCMA EQ 9-37)

FSslseismic.g 1.27=

ANALYZE SEISMIC OVERTURNING
resistance to overturning moment

conservatively treat resisitng moment arm of vertical components as acting at 1/3H for both soil and surchrage

(NCMA EQ 9-38)

( )

( ) ( ) ]tan
2

)5.0[(tan
3

tan
2

5.0)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+∆++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+∆+=

ωω

ω

HWPPHWPXW

HWPMM

udynVqdVusVww

udynVrseismicr

Mrdyn.gg 267 lb⋅=

driving, overturning moment

(NCMA EQ 9-39)

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

2
5.0

232)(
HPHPHPHWkM dynHqdHsHwhextseismicO ∆ Mdodyn.g 238.752 lb⋅=

FS Seismic Overturning

)(

)(
)(

seismicO

seismicr
seismicot M

M
FS =(NCMA EQ 9-40)

FSotseismic.g 1.12=
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ANALYZE SEISMIC BEARING PRESSURE

w

wwdynHqdHsHwh

seismic W

eWHPHPHPHWk
e

−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

=
2

5.0
232

∆ egseismic 0.43 ft⋅=

(NCMA EQ 9-43)

seismiclpuc ehWB 2' −+= B'gseismic 0.64 ft⋅=(NCMA EQ 9-42)

Bearing Capacity

Qult.gseismic 0.5 Nγ⋅ γf⋅ B'gseismic⋅ γf Hemb⋅ Nq⋅+ cf Nc⋅+:= Qult.gseismic 1883
lb

ft 2
⋅=(NCMA EQ 12-12)

Bearing Pressure

c

dynVVqVsW
seismicac B

PPPW
Q

′
∆+++

=
]5.0[ )()(

)((NCMA EQ 9-41) Qagseismic 625
lb

ft 2
⋅=

FS Bearing Capacity

(NCMA EQ 12-13) FSbcgseismic
Qult.gseismic
Qagseismic

:= FSbcgseismic 3.01=

ANALYZE SEISMIC INTER BLOCK SLIDING

uwuu zz
WaV λtan+=(NCMA EQ 9-46)

zzz dynHsHaEHext PPP ∆+= 5.0(NCMA EQ 9-45)

z

z
whzaEHext

zu
seismicsc WkP

V
FS

+
=)((NCMA EQ 9-44)

Vuk

1156
1212

1268

1324

1380

lb
ft
⋅

= PaEseismicHk
kh.ext Wwuk

⋅+

14
39

76

125

186

lb
ft
⋅

=k

5
4

3

2

1

= FSintsldgseismick

84
31

17

11

7

=
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APPENDIX B
REINFORCED SOIL SRW

SAMPLE PROBLEM (STATIC) 

INPUT INFORMATION

WALL GEOMETRY MODULAR BLOCK PARAMETERS
exposed wall height: H' 13 ft⋅= block height: Hu 0.6667 ft⋅=

block depth: Wu 1.0 ft⋅=wall embedment: Hemb 1.33 ft⋅=

cap height: Hcu 0.3125 ft⋅=
total wall height: Ht H' Hemb+= Ht 14.33 ft⋅=

unit weight of
concrete: γu 115

lb

ft 3
=

number of block
courses:

N ceil
Ht
Hu

⎛
⎜
⎝

⎞

⎠
= N 22=

setback of unit: sbu 1in=

Final total wall
height:

H N Hu⋅= H 14.67 ft⋅=
retaining wall
inclination :

ω atan
sbu
Hu

⎛
⎜
⎝

⎞

⎠
=

reinforcement  length:
(minimum length of
reinforcement is 0.6H
or 4 feet)

L 10.5 ft⋅=
ω 7.125 deg⋅=

SURCHARGE PARAMETERS BACKSLOPE PARAMETERS

Live load surcharge: ql 150
lb

ft 2
= backslope angle: β 25 deg⋅=

Dead load surcharge: qd 100
lb

ft 2
=

q =live load surchargel

βoffset

loffsetq

ω

H

Wu

β
uH

embH

doffsetq

q =dead load surchargef
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Definitions:

Determine the wall geometry variables needed for External Stability calculations, including:
offsets of slope crests•
offsets for surcharges, both live and dead•
calculating heights and widths of reinforced mass•
calculating equivalent slopes behind reinforced mass•
calculating dead load influence zone•

Input horizontal distance from back of wall face units to crest of slope βoffset( ):
βoffset 5.0 ft⋅=

Input horizontal distances from back of wall units to an offset surcharge for dead and live loads qdoffset( ) and qloffset( ) :
qdoffset 5ft=

qloffset 5ft=

Make sure that the surcharge loading is always initiated either a) directly behind the wall (flat or sloped) or b) on
a flat part of the backslope. 

SOIL PARAMETERS

INFILL SOIL RETAINED SOIL FOUNDATION SOIL LEVELING PAD SOIL

friction
angle:

ϕi 30 deg⋅= friction
angle:

ϕr 30 deg⋅= friction
angle:

ϕf 30 deg⋅= friction
angle:

ϕd 40 deg⋅=

unit
weight:

γi 120
lb

ft 3
⋅= unit

weight:
γr 120

lb

ft 3
⋅= unit

weight:
γf 120

lb

ft 3
⋅= unit

weight:
γd 125

lb

ft 3
=

cohesion of 
foundation
soil:

cf 0
lb

ft 2
⋅=

In this example, the vertical components of loads are applied
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EXTERNAL STABILITY

- Base Sliding
- Overturning
- Bearing Capacity

Determine the width of reinforced zone and increase in height above top of wall due to the backslope:

Width of reinforced zone at top of wall (L'):

uWLL −=′(NCMA EQ 7-3) L' 9.5 ft⋅=

Increase in width due to backslope (L''):

)(tan)(tan-1
)(tan)(tan

ωβ
ωβ

   
    L = L

′
′′(NCMA EQ 7-4)

L'' 0.6 ft⋅=

Horizontal width of reinforced sone at intersection with backslope (Lβ):

LLL ′′−′=β(NCMA EQ 7-11A)
Lβ 10.1 ft⋅=

Increase in height (at distance L') due to backslope (h):

ββ tanLh =(NCMA EQ 7-5) h 4.7 ft⋅=

Increase in height due to backslope (hs):

ββ tanoffsetsh =(NCMA EQ 7-7) hs 2.33 ft⋅=

Theoretical maximum height of slope (hmax) - 
(increased height (above top of wall) due a continuous  slope β extending to the horizontal distance ( Lβ + H+h)) :

)]([tanmax hHLh ++= ββ(NCMA EQ 7-6) hmax 13.74 ft⋅=

Reduce Lβ  (for subsequent equations), if slope crests within reinforced zone, thus reducing L''  to L''s  :

)tanmin( ωss horLL ′′=′′ L''s 0.29 ft⋅=

)min( sLLorLLL ′′+′′′+′=β
Lβ 9.79 ft⋅=(NCMA EQ 7-11A,B,C)
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Determine the height to from base of wall to top grade, at the back of the reinforced zone( Hext):

hHHh += is the height of soil at a distance of Lβ  behind the wall

ss hHH += is the height of soil at the crest of a broken slope

)min( shext HorHH = is the height of soil to calculate the active earth pressure from soil
self-weight.(NCMA EQ 7-10A,B,C)

Determine the equivalent β (external): the equivalent slope behind reinforced mass used for external analysis:

Note: Three possible cases exist
where hs is less than or equal to h, (in which case βext is considered to be 0 deg)1.
where hs is located between h and hmax, and2.
where hs is greater than hmax, (in which case βext is equal to β)3.

0=extβ hhs ≤
(NCMA EQ 7-9A) if 

ββ =ext
maxhhs >

(NCMA EQ 7-9C) if 

( )⎥⎦
⎤

⎢
⎣

⎡
+
−

=
hH
hhs

ext arctanβ
maxhhh s ≤<(NCMA EQ 7-9B) if 

βext 0 deg⋅=

Check to see if dead load is offset enough for removal of all resisting forces of surchage, regardless of geogrid length:

(Internal variables needed to calculate,include δi ,  hmaxint, βint αi   shown in the internal stability section

3
2 i

i
φδ =(NCMA EQ 7-44) δi 20.01 deg⋅=

βtan2intmax Hh =(NCMA EQ 7-45) hmaxint 13.68 ft⋅=

⎟
⎠
⎞

⎜
⎝
⎛=

H
hs

2
arctanintβ(NCMA EQ 7-46A)

ββ =int(NCMA EQ 7-46B)

βint 4.5 deg⋅=

(NCMA EQ 7-50)

i
iii

iiiiii
i a = φ

ωφβφωδ
ωφωδωφβφβφβφ

α +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−×−+
+×−+×++−×−+−−

))cot()(tan()tan(1
))]cot()tan(1())cot()(tan()[tan()tan(

tan
int

intintint

αi 52.32 deg⋅=
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Determine height above top of wall of the intersection of  failure plane with a continuous top slope of angle β  ( hint)

( )
β

βα
αω

tan
tantan

)tantan1(
int −

−
=

i

iH
h(NCMA EQ 7-26) hint 6.9 ft⋅=

Determine horizontal distance, dint( ) from back of wall face to the intersection of failure plane and top grade

( )
ω

α
tan

tanint H
hH

d
i

s −
+

= inthhs <(NCMA EQ 7-27A) if 

( )
ω

α
tan

tan
int

int H
hH

d
i

−
+

= inthhs ≥if (NCMA EQ 7-27B)

dint 11.3 ft⋅=

Check for two situations, either of which automatically zero out all dead load resisting forces (producing same results
as a live load):

First, if dead load offset is beyond internal failure plane or Second, if it is beyond base geogrid length, then no dead
resisting forces

If dead load is both in front of int plane and also over grid zone (CASE A), leave q d resisting forces on (reduce with  
Lβq as shown below)

intdqdoffset > βLqdoffset >(NCMA EQ 7-28A) if or then qd is neglected as a resisting force

intdqdoffset ≤ βLqdoffset ≤(NCMA EQ 7-28B) if and then qd is applied as a resisting force

Determine reduction of resisting forces due to offset dead load that rests over a portion of geogrid lengths.

Reduce the length of Lβ  to a reduced dead surcharge length Lβqdr over which the offset dead load directly rests. Lβqdr
replaces of Lβ  in resisting force equations for external sliding, external overturning, and internal sliding in static and

seismic

doffsetextq q)tan(HLL −−= ωββ(NCMA EQ 7-29) Lβq 2.67 ft⋅=
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EXTERNAL EARTH PRESSURES AND FAILURE PLANE

Determine the external acitve earth pressure coefficient (Kaext):

Wall to soil friction angle for external stability analysis (δe):

rie oroflesser φφδ =(NCMA EQ 7-2) δe 30 deg⋅=

Determine the external failure plane:

r
rextre

rerextrextrextr
e a = φ

ωφβφωδ
ωφωδωφβφβφβφ

α +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−×−+
+×−+×++−×−+−−

))cot()(tan()tan(1
))]cot()tan(1())cot()(tan()[tan()tan(

tan

αe 52.04 deg⋅=

Determine the external active earth pressue coefficient (Kaext):

2

2

2

)cos()cos(
)sin()sin(

1)cos(cos

)(cos

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
−+

+−

+
=

exte

extrer
e

r
aextK

βωδω
βφδφ

δωω

ωφ(NCMA EQ 7-1)
Kaext 0.25=

Determine the horziontal and vertical componentns of active earth pressure coefficient :

( )ωδ −= eaextaHext KK cos KaHext 0.227=

( )ωδ −= eaextaVext KK sin KaVext 0.096=

Determine External Horizontal Active Earth Force(Pa):

Resultant horizontal force due to active earth pressure from soil self-weight (Ps):

2)(5.0 extraexts HKP γ=(NCMA EQ 7-12) Ps 4263
lb
ft
⋅=

Resultant horizontal and vertical forces due to active earth pressure from soil self-weight:

( )ωδγ −= eextiaextsH HKP cos)(5.0 2(NCMA EQ 7-14) PsH 3927.8
lb
ft
⋅=

( )ωδγ −= eextiaextsV HKP sin)(5.0 2(NCMA EQ 7-20) PsV 1657.2
lb
ft
⋅=
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Resultant horizontal force due to active earth pressure from uniform surcharge ( Pq):

( ) )( extaextdlq HKqqP +=(NCMA EQ 7-13) Pq 1045
lb
ft
⋅=

Resultant horizontal and vertical forces due to active earth pressure from uniform surcharge ( Pqd & Pql):

( ) ( )ωδ −= eextaextdqdH HKqP cos)((NCMA EQ 7-15) PqdH 385.1
lb
ft
⋅=

( ) ( )ωδ −= eextaextlqlH HKqP cos)( PqlH 577.65
lb
ft
⋅=(NCMA EQ 7-16)

( ) ( )ωδ −= eextaextdqdV HKqP sin)((NCMA EQ 7-21) PqdV 162.48
lb
ft
⋅=

( ) ( )ωδ −= eextaextlqlV HKqP sin)((NCMA EQ 7-22) PqlV 243.71
lb
ft
⋅=

External horizontal active earth force (Pa):

qlqdsa PPPP ++= Pa 5308
lb
ft
⋅=

External horizontal & vertical active earth forces (PaH & PaV):

qlHqdHsHaH PPPP ++=(NCMA EQ 7-17) PaH 4890.5
lb
ft
⋅=

qlVqdVsVaV PPPP ++=(NCMA EQ 7-23) PaV 2063.4
lb
ft
⋅=

ANALYZE BASE SLIDING
Weight of reinforced infill zone (Wri):

HLW iri γ=(NCMA EQ 7-30) Wri 18480.9
lb
ft
⋅=

Weight of reinforced slope zone (Wrβ): 

 The following expression defines the weight of soil in the backslope above reinforced zone, Wrβ , per 3rd Edition rules:

by acutal geometry - either if a slope continous over the reinforced zone or if a  broken back slope that crests within the
reinforced zone.

321 ββββ rrrr WWWW ++=(NCMA EQ 7-31A) (for broken-back slope condition)

2
tan

2
βγγ β

β

LLhLW ii
r

′
=

′
=(NCMA EQ 7-31B) (for continuous slope condition)

Wrβ 1999.3
lb
ft
⋅=
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Determine weight and moment arms for each portion of a broken slope, for when a broken slope crests within reinforced
zone.

i
soffset

r

h
W γ

β
β ×

×
=

21
(NCMA EQ 7-31A1) Wrβ1 699.46

lb
ft
⋅=

( )[ ] isoffsetr hLW γββ ××−′=2(NCMA EQ 7-31A2) Wrβ2 1259
lb
ft
⋅=

( )
i

s
r

hW γω
β ×

×
=

2
tan2

3(NCMA EQ 7-31A3) Wrβ3 40.77
lb
ft
⋅=

( ) offsetur WHX βωβ 3
2

1 tan ++=(NCMA EQ 7-36A1) Xrβ1 6.17 ft⋅=

( )
2

tan2
offset

offsetur

L
WHX

β
βωβ

−′
+++=(NCMA EQ 7-36A2) Xrβ2 10.08 ft⋅=

( ) ( )
3

tan
tan3

ω
ωβ

s
ur

h
LWHX +′++=(NCMA EQ 7-36A3) Xrβ3 12.43 ft⋅=

Sliding resistance at base of soil reinforced SRW (Rs)

If reinforced (infill) soil controls:

( ) irriqddsS WWLqCR φββ tan++=(NCMA EQ 7-32A)

If gravel fill controls:

( ) drriqddsS WWLqCR φββ tan++=(NCMA EQ 7-32B)

If foundation soil controls:

( ) ]tan[ frriqdfdsS WWLqLcCR φββ +++=(NCMA EQ 7-32C)

Rs 13028.8
lb
ft
⋅=

Factor of safety for sliding (FSsl):

aH

s
sl P

R
FS =(NCMA EQ 7-33) FSsl 2.66=
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ANALYZE OVERTURNING
Calculate the resisting moment (Mr):

Moment arm for the weight of the reinforced infill zone (Xri):

( )( )
Uri

HLX ∆−
+

= 5.0
2
tan ω(NCMA EQ 7-35) Xri 6.13 ft⋅=

Moment arm for the weight of the reinforced slope zone (Xrβ):

( ) LWHX ur ′++= 3
2tan ωβ(NCMA EQ 7-36B) Xrβ 9.17 ft⋅=

Resisting moment due to soil above reinforced zone:

312211 βββββββ rrrrrrr XWXWXWM ++= hhs ≤(part of NCMA EQ 7-34A) if 

βββ rrr XWM = hhs >
Mrβ 17515.3 lb⋅=(part of NCMA EQ 7-34B) if 

Resisting moment due to soil in the reinforced zone:

ririri XWM =(part of NCMA EQ 7-34)
Mri 113195.7 lb⋅=

Moment arm due to surcharge (Xqβ):

( ) ( )[ ]
2

tan q
extq

L
HLX β

β ω −+=(NCMA EQ 7-37)
Xqβ 11.29 ft⋅=

Resisting moment due to surcharge (dead) load (over distance determined earlier):

βββ qqdq XLqM =(part of NCMA EQ 7-34) Mqβ 3011 lb⋅=

Resisting moment due to vertical components :

][][ ssVqqdVrV XPXPM +=(part of NCMA EQ 7-34) MrV 20452 lb⋅=

where:

ωtan)
3

( ext
s

HLX +=(NCMA EQ 7-24)

ωtan)
2

( ext
q

HLX +=(NCMA EQ 7-25)

Note: The PqdV term only applies if EQ 7-28 applies 

Resisting Moment (Mr):

rVqrirr MMMMM +++= ββ(NCMA EQ 7-34A,B) Mr 154174.5 lb⋅=
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Calculate the driving moment (Mo):

Moment arm for the resultant horizontal force (Ps) due to the active earth pressure fom soil self wieght (Ys):

3
ext

s
HY =(NCMA EQ 7-18)

Ys 5.67 ft⋅=

Moment arm for the resultant horisontal force (Pq) due to active earth pressure from a uniform surcharge (Yq):

2
ext

q
HY =(NCMA EQ 7-19) Yq 8.5 ft⋅=

Driving moment arm (Mo):

qqlHqdHssHO YPPYPM )( ++=(NCMA EQ 7-38) Mo 30438.7 lb⋅=

Determine the Factor of Safety for Overturning (FSot):

Factor of safety for overturnig (FSot):

o

r
ot M

MFS = FSot 5.07=(NCMA EQ 7-39)

ANALYZE BEARING PRESSURE
Eccentricity  of resultant vertical bearing force (e):

qdrri

or

LqWW
MMLe

ββ ++
−

−=
2(NCMA EQ 7-41)

e 0.23− ft⋅=

Equivalent footing width of eccentrically loaded foundation base of soil reinforced
SRW's (B):

eLB 2−=(NCMA EQ 7-40) B 10.5 ft⋅=

Bearing capacity coefficients
(refer to Table 12-1):

Nq 18.4=

Nc 30.14=

Nγ 22.402=

Ultimate bearing capacity of foundation soils (Qult):

cfqembffult NcNHBNQ ++= γγγ5.0(NCMA EQ 12-12)
Qult 17050.4

lb

ft 2
⋅=

Applied bearing stress (Qa):

B
PLqqWW

Q aVdlrri
a

++++
=

])([ ββ(NCMA EQ 7-42)
Qa 2380

lb

ft 2
⋅=

Determine the Factor of Safety Bearing Capacity (FSbc):

a

ult
bc Q

QFS = FSbc 7.16=(NCMA EQ 12-13)
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EXTERNAL STABILITY ANALYSIS IS NOW COMPLETE
WITH ALL MINIMUM FACTORS OF SAFETY SATISFIED

SUMMARY OF RESULTS
Kaext 0.246= αe 52.04 deg⋅=Results of External Stability Analysis (Static):

Horizontal
Compent of Force
(due to soil)

Vertical
Component of
Force (due to soil):

PsH 3927.8
lb
ft
⋅= PsV 1657.2

lb
ft
⋅=

Horizontal Compent of
Force (due to all earth
pressures)

PaH 4890.5
lb
ft
⋅= Vertical Component of

Force (due to all earth
pressures)

PaV 2063
lb
ft
⋅=

r 22566
lb
ft
⋅=Total Vertical

Load

Sliding
Resistance:

Rs 13028.8
lb
ft
⋅= FOS

Sliding:
FSsl 2.66=

Driving
Moment:

FOS
Overturning:

FSot 5.07=Mo 30438.7 lb⋅=

Resisting
Moment:

Mr 154175 lb⋅=
FOS Bearing
Capacity:

FSbc 7.16=

Bearing
Capacity:

Qult 17050.4
lb

ft 2
⋅= Base Reinforcement

length:
L 10.5 ft⋅=

Maximum Bearing
Pressure:

Qa 2380
lb

ft 2
⋅= Base

Eccentricity:
e 0.23− ft⋅=

B 10.5 ft⋅=
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INTERNAL STABILITY

- Tensile Overstress
- Pullout
- Internal Sliding

FORCES AND STRESSES USED IN CALCULATION OF INTERNAL STABILITY FOR
GEOSYNTHETIC SOIL REINFORCED SRW 

Determine maximum possible height above reinforced of an slope that does not crest with 2* H of wall

)tan(2intmax βHh =(NCMA EQ 7-45) hmaxint 13.68 ft⋅=

Determine equivalent slope used for internal earth pressure calculations

H
hs

2
arctanint =β intmaxhhs <(NCMA EQ 7-46A) if 

ββ =int intmaxhhs ≥(NCMA EQ 7-46B) if 
βint 4.54 deg⋅=

Note:
For internal stability calculations sample calculations will be shown for grid layer #1.  All other grid layers will be
shown through tabular calculations at the end of this section.  

Determine the Internal Soil Pressures

Wall to soil friction angle for internal stability analysis (δi):

ii φδ
3
2

=(NCMA EQ 7-44) δi 20.01 deg⋅=

Internal active earth pressure coefficient (Kaint):

2

int

int2

2

int

)cos()cos(
)sin()sin(

1)cos(cos

)(cos

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
−+

+−

+
=

βωδω
βφδφ

δωω

ωφ

i

iii
i

i
aK(NCMA EQ 7-43) Kaint 0.263=

Determine Long Term Design Strength of reinforement using NCMA method "B" (LTDS): 

REDUCTION FACTORS 
  & COEFFICIENTS

creep reduction factor: RFcr 1.58=

durability reduction factor: RFd 1.10= Tult

3500

4700

7400

⎛
⎜
⎜
⎝

⎞

⎠

lb
ft
⋅= for Gridtype

"TYPE 1"

"TYPE 2"

"TYPE 3"

⎛
⎜
⎜
⎝

⎞

⎠
=

installation damage reduction factor: RFid 1.05=
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(NCMA EQ 2-3) LTDS
Tult

RFd RFid⋅ RFcr⋅
= LTDS

1918

2575

4055

⎛
⎜
⎜
⎝

⎞

⎠

lb
ft
⋅=

coefficient of shear 
stress interaction: Ci 0.7=

coefficient of 
direct sliding: Cds 1.0=

*Note: Cds should be assigned a value of 1.0 unless a layer of geosynthetic
reinforcement is placed at the base of the first course of the SRW units. 

ANALYZE TENSILE REQUIREMENTS FOR GEOGRID LAYERS

DETERMINATION OF THE FORCE ACTING ON EACH GEOGRID LAYER

)cos(][ )()( ωδγ −++= incadlning AKqqDF(NCMA EQ 7-61)

Note:  The first step to analyzing the tensile requirement of the reinforcement elements, is to layout the wall and
reinforcement.

IDENTIFY BLOCK LAYERS
GEOGRID PARAMETERSSRW Unit #: Heel Elev:
number of geogrid layers: Nl 8=

unitk

22
21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

= Elevk

14
13.33

12.67

12

11.33

10.67

10

9.33

8.67

8

7.33

6.67

6

5.33

4.67

4

3.33

2.67

2

1.33

0.67

0

ft⋅

= SELECT GEOGRID REINFORCEMENT LAYERS

geogrid courseing: geogrid elevation: initial
geogrid length (L):

srwn

21
18

15

12

9

6

3

1

= En

14
12

10

8

6

4

2

0.67

ft⋅

= lengthofgrid

10.5
10.5

10.5

10.5

10.5

10.5

10.5

10.5

ft⋅
=
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q =150 lb/ftl

βoffset

loffset
q

ω

H=14.7 ft

L=10.5 ft
embH TY

PE
 I

RE
IN

FO
RC

EM
EN

T

5 ft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

E1 = 0.67ft

E2 = 2.0ft

E3 = 4.0ft

E4 = 6.0ft

E5 = 8.0ft

E6 = 10.0ft

E7 = 12.0ft

E8 = 14.0ft

q =100 lb/ftd

doffset
q

Calculate Contributary area (Ac(n)):

2/)( )1()2()1( EEAc += Ac1
1.33 ft⋅=(NCMA EQ 7-54) (For the lowermost layer)

]2/)[( )1()()( −−−= nnNc EEHA(NCMA EQ 7-57) (For the topmost layer N)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
= −+

22
)1()()()1(

)(
nnnn

nc

EEEE
A(NCMA EQ 7-55) (For any intermediate layer n)

Calculate the depth to the midpoint of Ac(n) (Dj):

)
2

( )1(
1

cA
HD −= D1 14 ft⋅=(NCMA EQ 7-58) (For the lowermost layer)

2
)(Nc

N

A
D =(NCMA EQ 7-60) (For the topmost layer N)

)
2

(...[ )(
)1()2()1(

nc
ncccn

A
AAAHD ++++−= −

(NCMA EQ 7-59) (For any intermediate layer n)
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Calculate the stress on the geogrid generated from the soil:  

)(int)( ncaningsoil AKDF γ= Fgsoil1 588.9
lb
ft
⋅=

Calculate the stress on the geogrid generated from the surcharge loading:  

)(int)(arg ][ ncadlnegsurch AKqqF += Fgsurcharge1 87.63
lb
ft
⋅=

Calculate the applied tensile loads (Fg(n)):

)cos(][ )(arg)()( ωδ −+= inegsurchngsoilng FFF Fg1
659.5

lb
ft
⋅=

Fgsoiln

43.8
168.3

294.5

420.6

546.8

673

657.3

588.9

lb
ft
⋅

= Fgsurchargen

109.5
131.4

131.4

131.4

131.4

131.4

109.5

87.6

lb
ft
⋅

= Fgn

149.5
292.2

415.2

538.2

661.2

784.2

747.5

659.5

lb
ft
⋅

=

Determine the factor of safety against tensile overstress (FSton):

)(

)(

ng

n
to F

LTDS
FS

n
=

FSto1
2.91=(NCMA EQ 7-62)

The resulting Force in each layer is thus:

Fgn

149.5
292.2

415.2

538.2

661.2

784.2

747.5

659.5

lb
ft
⋅

= LTDSGeogrid n( )

1917.9
1917.9

1917.9

1917.9

1917.9

1917.9

1917.9

1917.9

lb
ft
⋅

= FSton

12.8
6.6

4.6

3.6

2.9

2.4

2.6

2.9

= En

14
12

10

8

6

4

2

0.7

ft⋅

= grid n( )

"TYPE 1"
"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

=
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ANALYZE PULLOUT OF GEOGRID REINFORCEMENT

Inclination of Coulomb failure surface for internal stabilit y (αi):

(NCMA EQ 7-50)

i
iii

iiiiii
i a = φ

ωφβφωδ
ωφωδωφβφβφβφ

α +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−×−+
+×−+×++−×−+−−

))cot()(tan()tan(1
))]cot()tan(1())cot()(tan()[tan()tan(

tan
int

intintint

αi 52.32 deg⋅=
 

Anchorage length for nth reinforcement layer (La(n)):

))tan(())90tan(( )()()( ωα ninuna EEWLL +−−−=(NCMA EQ 7-64) LaNl
0.44 ft⋅=

Note that the anchorage length of the top layer is less than the recommended 1 ft.
Adjust the anchorage length to 1 ft and revise length of grid.

Lan

0.4
1.7

3

4.3

5.6

6.9

8.2

9.1

ft⋅

= lengthofgridn

11.1
10.5

10.5

10.5

10.5

10.5

10.5

10.5

ft⋅

=

Note: In this example, L = lengthofgrid in EQ 7-64

Lan

1
1.7

3

4.3

5.6

6.9

8.2

9.1

ft⋅

= lengthofgridn

11.1
10.5

10.5

10.5

10.5

10.5

10.5

10.5

ft⋅

= Note: Make sure minimum anchorage requirements
are met.
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Determine the average depth of overburden ( dn):

Define hs (CASE A) (see Figure 7-13 of the manual) as the height of soil above the reinforced zone in a broken-back
slope condition (for the anchorage length midpoint for every reinforcement):

)tan(
2

)tan(
)tan(

)()( βω
α ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= na

i

n
sCASEA

L
H

E
h

Compare this height to the previously defined hs (for sloped backfill), then the depth of overburden is:

)tan(
2

)tan(
)tan(

)( )()(
)( βω

α ⎥
⎦

⎤
⎢
⎣

⎡
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= na

i

n
nn

L
H

E
EHd ssCASEA hh <(NCMA EQ 7-65B) if 

ssCASEA hh ≥
snn hEHd +−= )()(

if (NCMA EQ 7-65A)
d1 15.5 ft⋅=

Calculate the anchorage capacity of reinforcement (A Cn):

( ) idininan qdCLAC φγ tan2 )( += AC1 14367
lb
ft
⋅=(NCMA EQ 7-63)

Note: The qd term only applies if EQ 7-28B applies 

Determine the factor of safety against pullout (FSpo(n)):

)(

)(

ng

n
po F

AC
FS

n
=

FSpo1
21.78=(NCMA EQ 7-66)

ACn

371.6
980.2

2299.8

4121.6

6445.7

9181.8

12160.5

14367

lb
ft
⋅

= Fgn

149.5
292.2

415.2

538.2

661.2

784.2

747.5

659.5

lb
ft
⋅

= FSpon

2.5
3.4

5.5

7.7

9.7

11.7

16.3

21.8

=



232� Design Manual for Segmental Retaining Walls 3rd Edition 

ANALYZE INTERNAL SLIDING

innri EHLW γ)( )()( −′=′(NCMA EQ 7-76) W'r1
15960.8

lb
ft
⋅=

Note: The weight Wrβ remains the same as calculated earlier (EQ 7-31) W'rβ1
1999

lb
ft
⋅=

Cds 0.7=

Resultant horizontal and vertical forces due to active earth pressure from soil self-weight (PsH and PsV):

)cos()(5.0 2
)()( ωδγ −−= enextraextnsH EHKP PsH1

3626
lb
ft
⋅=(NCMA EQ 7-67)

)sin()(5.0 2
)()( ωδγ −−= enextraextnsV EHKP PsV1

1530
lb
ft
⋅=(NCMA EQ 7-70)

The horizontal and vertical earth forces due to a uniformly distributed live load surchage ql and dead load surcharge
qd active over the retained soil surface:

)cos()(
)()(

ωδ −−= enextaextdnqdH EHKqP PqdH 1
369.99

lb
ft
⋅=

(NCMA EQ 7-68)

)sin()(
)()(

ωδ −−= enextaextdnqdV EHKqP PqdV1
156

lb
ft
⋅=(NCMA EQ 7-71)

)cos()(
)()(

ωδ −−= enextaextlnqlH EHKqP PqlH1
554.99

lb
ft
⋅=(NCMA EQ 7-69)

)sin()(
)()(

ωδ −−= enextaextlnqlV EHKqP PqlV1
234

lb
ft
⋅=(NCMA EQ 7-72)

Compute the active earth force (Pa(n)):

)()()()( nqlHnqdHnsHnaH PPPP ++= PaH1
4551

lb
ft
⋅=(NCMA EQ 7-73)

)()()()( nqlVnqdVnsVnaV PPPP ++=(NCMA EQ 7-74) PaV1
1920

lb
ft
⋅=

Determine the sliding resistance at E1  (Rs'(n)):

( ) inqdVnsVrnriddsnS PPWWLqCR φββ tan)()()()( +++′+=′ R's1
8048

lb
ft
⋅=(NCMA EQ 7-75)

Weight of segmental retaining wall (Ww(n)):

uunnW WEHW γ)()( −=

Calculate the shear capacity at E1 (Vu(n)):

unWunu WaV λtan)()( +=(NCMA EQ 7-77)
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In this example, the Shear Capacity is defined as follows:
deg35tan/1100 )()( nWnu WftlbV +=

0 1000 2000

1500

3000

NORMAL LOAD (lb/ft)

SH
EA

R
 C

A
PA

C
IT

Y
 (l

b/
ft)

Calculate the factor of safety for sliding (FSsl(n)):

)(

)()(
)(

naH

nuns
nsl P

VR
FS

+′
=(NCMA EQ 7-78)

R'sn

1255
2222

3206

4210

5232

6272

7331

8048

lb
ft
⋅

= Vun

1154
1315

1476

1637

1798

1959

2120

2227

lb
ft
⋅

= PaHn

292
623

1062

1610

2267

3033

3907

4551

lb
ft
⋅

= FSsln
8.25
5.68

4.41

3.63

3.1

2.71

2.42

2.26

=



234� Design Manual for Segmental Retaining Walls 3rd Edition 

ANALYZE CONNECTION  CAPACITY
Determine connection strength for all reinforcement and segmental retaining wall units

Facing connection strength (Tconn(n)):

csnWcsnconn WaT λtan)()( +=(NCMA EQ 7-79)

In this example, the following connection capacity will be used for the "TYPE 1" reinforcement:

25tan/991 )()( nWnconn WftlbT += for Normal load less than or equal to 1950 lb/ft

ftlbTconnMAX /1900= for Normal load greater than 1950 lb/ft

0 900 1800

1000

2000
Connection Capacity Curve for TYPE1 Reinforcement

NORMAL LOAD (lb/ft)

C
O

N
N

EC
TI

O
N

 C
A

PA
C

IT
Y

 T
co

nn
  (

lb
/ft

)

Determine the "zone of influence" of the surcharge on the facing:

Define hdoffset and hloffset as the height of soil above the reinforced zone at the location of the surcharge load:

βtandoffsetdoffset qh = hdoffset 2.33 ft⋅=

βtanloffsetloffset qh = hloffset 2.33 ft⋅=

Define hinflmax as the maximum height of soil above the reinforced zone based on a 2V:1H influence line:

β

βωβ

tan2

tantantan
2

2
maxinf −

�
�
�

�
�
� −

=
HH

h l(NCMA EQ 7-92) hinflmax 3.34 ft⋅=2 tan tan tan
2

2 taninflmax

H H
h

 b - ω b 
 =

- b
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( )ωtan21
2

inf −
−

−= loffsetloffset
ql

hq
HE

Eqlinf 4.44 ft⋅=(NCMA EQ 7-93)

( )ωtan21
2

inf −
−

−= doffsetdoffset
qd

hq
HE(NCMA EQ 7-94) Eqdinf 4.4 ft⋅=

If hdoffset and/or hloffset < hinflmax (broken back slope crests within the zone of influence, qd and/or ql are within the zone of
influence and are applied to the wall face up to elevation Eqdinf and/or Eqlinf

Fgconn

43
164

287

410

533

784

747

659

lb
ft
⋅

= Fgn

149
292

415

538

661

784

747

659

lb
ft
⋅

= VuTYPE1n

1027
1134

1241

1349

1456

1563

1670

1742

lb
ft
⋅

= En

14
12

10

8

6

4

2

0.67

ft⋅

=

In this example, Fgcon(n) refers to the tensile requirement of the reinforcement element when the zone of influence is
considered.  Note that the bottom three elements are affected by the surcharge loads (compared to Fg(n)), whereas
the top five elements are not. 

Calculate the factor of safety for each connection (FSconinfl(n)):

Fgconn

43
164

287

410

533

784

747

659

lb
ft
⋅

= Tclxn

1027
1134

1241

1349

1456

1563

1670

1742

lb
ft
⋅

= LTDSGeogrid n( )

1918
1918

1918

1918

1918

1918

1918

1918

lb
ft
⋅

=En

14
12

10

8

6

4

2

0.7

ft⋅

= FSconinfln
24.04
6.91

4.32

3.29

2.73

1.99

2.23

2.64

= Tconn n( )

1027
1134

1241

1349

1456

1563

1670

1742

lb
ft
⋅

=TorC n( )

"Connection"
"Connection"

"Connection"

"Connection"

"Connection"

"Connection"

"Connection"

"Connection"

= grid n( )

"TYPE 1"
"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

=
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Calculate crest topling (unreinforced units above top grid layer):
Calculate the horizontal active earth force :

Resultant horizontal force due to active earth pressure from soil self-weight (PsH(z)):

)cos(5.0 2
int)( ωδγ −= iuiazsH zKP(NCMA EQ 7-83) P'shN

7
lb
ft
⋅=

Resultant horizontal force due to active earth pressure from uniform surchage, ql+qd (Pq(z))

)cos(int)( ωδ −= iualzqlH zKqP(NCMA EQ 7-82 )

)cos(int)( ωδ −= iuadzqdH zKqP(NCMA EQ 7-82)

If the depth to the bottom of the unit is above the elevation of the zone of influence, then the horizontal components of the
surcharge load are not taken into account.  In this example, the zone of influence is below the units being analyzed,
therefore the surcharge loads do not apply.

Resultant vertical force due to active earth pressure from soil self weight (PsV(z)):

)sin(5.0 2
int)( ωδγ −= iuiazsV zKP(NCMA EQ 7-85 )

P'svN
1.6

lb
ft
⋅=

Resultant vertical force due to active earth pressure from uniform surcharge ( PqV(z)):

)sin(int)( ωδ −= iualzqlV zKqP(NCMA EQ 7-87) P'qlvN
5.86

lb
ft
⋅=

)sin(int)( ωδ −= iuadzqdV zKqP(NCMA EQ 7-86) P'qdvN
3.91

lb
ft
⋅=

If the depth to the bottom of the unit is above the elevation of the zone of influence, then the vertical components of the
surcharge load are not taken into account.  In this example, the zone of influence is below the units being analyzed,
therefore the surcharge loads do not apply.

Weight of blocks above top grid:

( ) uuuzw WzW γ=

moment arm of units' resistance to overturning/crest toppling:

( ) uuuzw zGX ∆−+= 5.0)tan5.0( ω(NCMA EQ 7-90)

( ) )tan
2

()tan
3

( )()()()( ωω u
uzqdV

u
uZsVzwzwzr

z
WP

z
WPXWM ++++=(NCMA EQ 7-89)

Driving moment (Mo(z)):

23 )()()(
u

zqH
u

zsHzO
z

P
z

PM +=(NCMA EQ 7-91 )
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Determine the Factor of Safety for Overturning (FSot(k)):

k

k
kot Mo

MrFS =)((NCMA EQ 7-88 )
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Kaint 0.263= αi 52.324 deg⋅=Results of Internal Stability Anylysis:

SRW 
unit #:

Elevation: Length: Anchor
length: 

      FOS
 Overstress:

   FOS 
Pullout:

  FOS 
Sliding:

Grid
Type: Allowable 

Strength:

LTDSGeogrid n( )

1918
1918

1918

1918

1918

1918

1918

1918

lb
ft
⋅

srwn

21
18

15

12

9

6

3

1

= En

14
12

10

8

6

4

2

0.67

ft⋅

= lengthofgridn

11.1
10.5

10.5

10.5

10.5

10.5

10.5

10.5

ft⋅

=Lan

1
1.73

3.03

4.32

5.62

6.91

8.21

9.07

ft⋅

= FSton

12.8
6.6

4.6

3.6

2.9

2.4

2.6

2.9

= FSpon

2.5
3.4

5.5

7.7

9.7

11.7

16.3

21.8

= FSsln
8.3
5.7

4.4

3.6

3.1

2.7

2.4

2.3

= grid n( )

"TYPE 1"
"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

"TYPE 1"

=

Tensile/
 Connection 
 Load:

Pullout 
Capacity:

Sliding
Force:

  Sliding
Capacity:

Fgn

149
292

415

538

661

784

747

659

lb
ft
⋅

= ACn

372
980

2300

4122

6446

9182

12160

14367

lb
ft
⋅

= PaHn

292
623

1062

1610

2267

3033

3907

4551

lb
ft
⋅

= PaVn

123
263

448

679

957

1280

1649

1920

lb
ft
⋅

= Scn

2409
3536

4682

5847

7030

8231

9451

10275

lb
ft
⋅

= R'sn

1255
2222

3206

4210

5232

6272

7331

8048

lb
ft
⋅

=

Tensile/
 Connection 
 Load:

Tensile Load
w/Surcharge
Influence

Connection 
Capacity (peak):

FOSConnection
w/surcharge influence:

Fgn

149
292

415

538

661

784

747

659

lb
ft
⋅

= Fgconn

43
164

287

410

533

784

747

659

lb
ft
⋅

= Tconn n( )

1027
1134

1241

1349

1456

1563

1670

1742

lb
ft
⋅

= FSconinfln
24
6.9

4.3

3.3

2.7

2

2.2

2.6

=

Elfacialinfl 4.44 ft⋅=

Edfacialinfl 4.44 ft⋅=
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Results of Facing Stability Analyses (Crest toppling)
Note: Only the top unsupported blocks (blocks located above the uppermost geogrid layer) are considered in the
analysis

SRW 
Unit #:

Heel
 Elevation:

Driving 
Moment:

Resisting
Moment:

FOS
Overturning:

unitpp

22

= Elevpp

14 ft⋅

= Mdopp

1.5 lb⋅

= Mrrpp

39.9 lb⋅

= FSovtpp

26.3

=

q =150 lb/ftl

βoffset

loffset
q

ω

H=14.7 ft

L=10.5 ft
embH

L=11.1 ft

TY
PE

 I
RE

IN
FO

RC
EM

EN
T

5 ft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

E1 = 0.67ft

E2 = 2.0ft

E3 = 4.0ft

E4 = 6.0ft

E5 = 8.0ft

E6 = 10.0ft

E7 = 12.0ft

E8 = 14.0ft

q =100 lb/ftd

doffset
q
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SAMPLE PROBLEM (SEISMIC) 

EXTERNAL Note: DA=0, no displacement analysis
DA=1, displacement analysisDisplacement analysis is

considered:
DA 1=

Allowable deformation (in.): dsei 3= inches

Maximum earthquake
acceleration factor:

A 0.2=

2
Akhext =(NCMA EQ 9-23)

25.0

74.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

seismic
hext d

AAk(NCMA EQ 9-24) if displacement analysis is considered

kh.ext 0.075=
Seismic inertia angle:

( )hextext ka tan=θ(NCMA EQ 9-48) Θext 4.3 deg⋅=

2

2

2

)cos()cos(
)sin()sin(1)cos(coscos

)(cos

⎥
⎦

⎤
⎢
⎣

⎡

++−
−−+

++−

−+
=

extexte

extextrer
exteext

extr
aEextK

βωθωδ
θβφδφθωδωθ

θωφDynamic earth pressure
coefficient:

(NCMA EQ 9-47)

KAE.ext 0.296=

aaEdyn KKK −=∆(NCMA EQ 9-9) ∆Kdyn.ext 0.05=

25.0 extraEextaE HKP γ= PAE 5135
lb
ft
⋅=

HORIZONTAL COMPONENTS OF EARTH PRESSURE COEFFICIENTS

KaHext Kaext cos δe ω−( )⋅= (static condition) KaHext 0.227=

( )ωδ −= eaEextaEHext KK cos(NCMA EQ 9-49) KAEH.ext 0.2729=

( ) ( )ωδωδ −∆=−−=∆ coscos)( dynexteaextaEextdynHext KKKK(NCMA EQ 9-50) ∆KdynH.ext 0.046=

VERTICAL COMPONENTS OF EARTH PRESSURE COEFFICIENTS

(NCMA EQ 9-54) KaVext Kaext sin δe ω−( )⋅= (static condition) KaVext 0.096=

( )ωδ −= eaEextaEVext KK sin(NCMA EQ 9-54) KAEV.ext 0.115=

( ) ( )ωδωδ −∆=−−=∆ sinsin)( dynexteaextaEextdynVext KKKK(NCMA EQ 9-55) ∆KdynV.ext 0.02=
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HORIZONTAL COMPONENTS OF EARTH PRESSURE

25.0 HKP raHsH γ=(NCMA EQ 9-16) (static condition) PsH 3928
lb
ft
⋅=

)cos(5.0 2 ωδγ −== eaEextraEHextaEH PHKP(NCMA EQ 9-51)
PAEH 4731

lb
ft
⋅=

VERTICAL COMPONENTS OF EARTH PRESSURE

25.0 HKP aVsV γ=(NCMA EQ) (static condition) PsV 1657
lb
ft
⋅=

)sin(5.0 2 ωδγ −== eaEextraEVextaEV PHKP(NCMA EQ 9-56) PAEV 1996
lb
ft
⋅=

Determine dynamic external earth pressures 

sHaEHextrdynHdynH PPHKP −=∆=∆ 25.0 γ(NCMA EQ 9-52) ∆PdynH 803
lb
ft
⋅=

sVaEVextrdynvdynV PPHKP −=∆=∆ 25.0 γ ∆PdynV 339
lb
ft
⋅=(NCMA EQ 9-57)

Determine total horizontal and vertical components of earth pressures (static and dynamic) 

dynHqdHsHaEHext PPPP ∆++= 5.0(NCMA EQ 9-53) PAEH.ext 4714
lb
ft
⋅=

dynVqdVsVaEVext PPPP ∆++= 5.0(NCMA EQ 9-58) PAEV.ext 1989
lb
ft
⋅=

DETERMINE WEIGHTS AND MOMENT ARMS FOR RESISTANCE AND INERTIAL FORCES CALCS  

Weight of face and reinforced soil
(from static) 

HLW iri γ= Wri 18481
lb
ft
⋅=(NCMA EQ 7-30)

Determine weight of slope above
reinforced mass:
(dependant on top-of-wall geometry)  

321 ββββ rrrr WWWW ++=(NCMA EQ 7-31A) (for broken-back slope condition)

2
tan

2
βγγ β

β

LLhLW ii
r

′
=

′
=(NCMA EQ 7-31B) (for continuous slope condition)

Determine weights  of pieces of broken soil slope:  

i
soffset

r

h
W γ

β
β ×

×
=

21
(NCMA EQ 7-31A1) (for broken-back slope condition) Wrβ1 699.46

lb
ft
⋅=

( )[ ] isoffsetr hLW γββ ××−′=2(NCMA EQ 7-31A2) (for broken-back slope condition) Wrβ2 1259
lb
ft
⋅=

( )
i

s
r

hW γω
β ×

×
=

2
tan2

3(NCMA EQ 7-31A3) (for broken-back slope condition) Wrβ3 40.77
lb
ft
⋅=
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Determine resisting moment arms  soil in slope above reinforced mass

( ) LWHX ur ′++= 3
2tan ωβ(NCMA EQ 7-36B) Xrβ 9.17 ft⋅=(for continuous slope condition)

( ) offsetur WHX βωβ 3
2

1 tan ++=(NCMA EQ 7-36A1) (for broken-back slope condition) Xrβ1 6.17 ft⋅=

( )
2

tan2
offset

offsetur

L
WHX

β
βωβ

−′
+++=(NCMA EQ 7-36A2) Xrβ2 10.08 ft⋅=(for broken-back slope condition)

( ) ( )
3

tan
tan3

ω
ωβ

s
ur

h
LWHX +′++=(NCMA EQ 7-36A3) Xrβ3 12.43 ft⋅=(for broken-back slope condition)

Determine height of slope for reduced width of reinforced mass used for intertial calcs  

)tan()tan(1
)tan()tan()5.0(" 5.0 ωβ

ωβ
−
−

= u
H

WHL(NCMA EQ 9-61) L''0.5H 0.39 ft⋅=

)tan()"5.0(' 5.0 βHu LWHh +−=(NCMA EQ 9-62) h' 3.14 ft⋅=

Determine weights for inertial forces, including reduced width (0.5H) reinforced mass  

iui HWHW γ)5.0( −=′(NCMA EQ 9-60) W'i 11148
lb
ft
⋅=

Determine driving moment arms  of soil in slope above reduced 0.5H reinforced soil mass ( for inertial forces) 

31
shHY +=β(NCMA EQ 9-65) Y'β1 15.44 ft⋅=

2
' 2

shHY +=β
Y'β2 15.83 ft⋅=(NCMA EQ 9-66)

shHY
3
2

3 +=β(NCMA EQ 9-67) Y'β3 16.22 ft⋅=

3
'' hHY +=β(NCMA EQ 9-69) Y'β 15.71 ft⋅=

If slope breaks before 0.5H-Wu, ( hs h'< ), then Wβ2 for inertial soil mass (0.5H widht) is modified to W'β2, while Wβ1and 

Wβ3 remain the same as they are above for entire reinforced mass

( )[ ] isoffsetur hWHW γββ ××−−= 5.0' 2(NCMA EQ 9-64) W'rβ2 373.15
lb
ft
⋅=

Determine reduced weight of slope above reduced width reinforced mass (0.5H wide) of inertial
forces

321 ββββ rrr WWWW +′+=′ hhs ′<(NCMA EQ 9-63) for

i
u hWHW γβ 2

')5.0( −
=′ hhs ′≥(NCMA EQ 9-68) for

W'β 1113
lb
ft
⋅=
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External Sliding Cds 1=

Sliding resistance at base of soil reinforced SRW (Rs)

If reinforced (infill) soil controls:

( ) idynVVqdVsrirddsdynsw PPPWWLqCR φββ tan))5.0(( )()()()()( ∆+++++=(NCMA EQ 9-70A)

If drainage soil controls:

( ) ddynVVqdVsrirddsdynsw PPPWWLqCR φββ tan))5.0(( )()()()()( ∆+++++=(NCMA EQ 9-70B)

If foundation soil controls:

( )( ) ]tan)5.0([ )()()()()( fdynVVqdVsrirdfdsdynsw PPPWWLqLcCR φββ ∆++++++=(NCMA EQ 9-70C)

Rseismic 13127
lb
ft
⋅=

Determine inertial driving forces of wall face and reinforced soil mass

)()( βWWWkP iwexthir ′+′+=(NCMA EQ 9-59) PIR 1049
lb
ft
⋅=

Calculate FSsl(seismic)

)5.0(
)(

)(
dynHqdHsHir

dynsw
seismicsl PPPP

R
FS

∆+++
=(NCMA EQ 9-71)

FSslseismic 2.28=

Overturning
Calculate resisting moments of soil slope

312211 βββββββ rrrrrrr XWXWXWM ++= hhs ≤(part of NCMA EQ 7-34A) if 

βββ rrr XWM = hhs >(part of NCMA EQ 7-34B) if 
Mrβ 17515 lb⋅=

Calculate driving moment of reduced inertial soil slope weight

332211' βββββββ YWYWYWM rrr +′+= hhs ≤(NCMA EQ 9-74A) if 

βββ ''' YWM = hhs >(NCMA EQ 9-74B) if 
M'β 17372 lb⋅=

Calculate resistance to overturning moment

( )]tan
2

[5.0)( ωext
dynVrseismicr

HLPMM +∆+=(NCMA EQ 9-72)
Mrseismic 156133 lb⋅=

Calculate driving moment arm of inertial forces

ir

exthiexthwexth

ir P

MkHWkHWk
h

β'22 )()()( +′+
=(NCMA EQ 9-75) hIR 7.99 ft⋅=
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Calculate driving overturning moment (dynamic earth pressure considered uniform for whole height, so working a 0.5
Hext

irirqdynHqqdHssHseismicO hPYPYPYPM +∆++= 5.0)((NCMA EQ 9-73) Moseismic 37327 lb⋅=

)(

)(
)(

seismico

seismicr
seismicot M

M
FS =(NCMA EQ 9-76) FSotseismic 4.18=

Seismic Bearing Capacity

)5.0()(2 )()(

)()(

dynVqdVsVdrir

seismicoseismicr
seismic PPPLqWW

MMLe
∆+++++

−
−=

ββ

(NCMA EQ 9-77) eseismic 0.024 ft⋅=

seismicseismic eLB 2−= Bseismic 10.451 ft⋅=(NCMA EQ 9-78)

seismic

dynVqdVsVdrir
seismic B

PPPLqWW
Q

)5.0()( )()( ∆+++++
= ββ Qseismic 2175

lb

ft 2
⋅=(NCMA EQ 9-79)

cfqembfseismicfult NcNHBNQ ++= γγγ5.0(NCMA EQ 12-12) Qultseismic 16984.5
lb

ft 2
⋅=

seismic

ultseismic
seismicbc Q

Q
FS =(NCMA EQ 12-13)

FSbcseismic 7.81=

SUMMARY OF RESULTS

Results of External Stability Analysis (Seismic): KAE.ext 0.296= αe 52.041 deg⋅=

PAEH.conv 4731
lb
ft
⋅= Total Vertical Force: PAEV.conv 1996

lb
ft
⋅=Total Horizontal Force:

PsH 3928
lb
ft
⋅= PsV 1657

lb
ft
⋅=

∆ PdynH 803
lb
ft
⋅= ∆ PdynV 339

lb
ft
⋅=

rseismic 22735.9
lb
ft
⋅=

Rseismic 13127
lb
ft
⋅=Sliding Resistance: FOS Sliding: FSslseismic 2.28=

Driving Moment:

Mrseismic 156133 lb⋅=

FOS Overturning: FSotseismic 4.18=
Moseismic 37327 lb⋅=

Resisting Moment: FOS Bearing
Capacity:

FSbcseismic 7.81=

Bearing
Capacity:

Qultseismic 16984.5
lb

ft 2
⋅=

Base Reinforcement
length:

L 10.5 ft⋅=

Qseismic 2175
lb

ft 2
⋅=Maximum Bearing

Pressure: Base
Eccentricity:

eseismic 0.02 ft⋅=
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SEISMIC INTERNAL

AAkh )45.1(int −= gA 45.0≤for(NCMA EQ 9-22)

Akh =int gA 45.0>for
kh.int 0.25=

Θint atan kh.int( )=

βintMAX ϕi Θint−= βintMAX 15.96 deg⋅=

(NCMA EQ 9-80)

2

intint

intint
int

2
int

int
2

int

)cos()cos(
)sin()sin(1)cos(coscos

)(cos

⎥
⎦

⎤
⎢
⎣

⎡

++−
−−+

++−

−+
=

βωθωδ
θβφδφθωδωθ

θωφ

i

iii
i

i
aEK

KAE.int 0.495=

∆Kdyn.int KAE.int Kaint−= ∆Kdyn.int 0.2321=

KAEH.int KAE.int cos δi ω−( )⋅= KAEH.int 0.4825=

)cos()( intintint ωδ −−=∆ iaaEdynH KKK(NCMA EQ 9-81) ∆KdynH.int 0.2263=

KAEV.int KAE.int sin δi ω−( )⋅= KAEV.int 0.11=

∆KdynV.int ∆Kdyn.int sin δi ω−( )⋅= ∆KdynV.int 0.052=

Increase temp grid strengths during seismic event by removing creep reduction factor

crnnseismic RFLTDSLTDS ×= )()((NCMA EQ 9-88)

Weight wall unit face in contributorty area

uuncnw WAW γ)()( =∆(NCMA EQ 9-85)

HAKF incdynHndyn γ)(int)( 5.0 ∆= uniform distribution of internal dynamic
load across contributory areas(NCMA EQ 9-86)

)cos(][ )(int)( ωδγ −+= incadningstat AKqDF(NCMA EQ 9-84) includes static dead load
contribution

Total tensile load requirement:

)()()((int))( ndynngstatnwhni FFWkF ++∆=(NCMA EQ 9-83)
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Fgstat.in

85.43
215.28

338.29

461.31

584.32

707.34

683.42

608.24

lb
ft
⋅

= Fdyn.in

331.87
398.24

398.24

398.24

398.24

398.24

331.87

265.49

lb
ft
⋅

=

Tensile Overstress

)(

)(

)(
ni

seismic
toseismic F

LTDS
FS n

n
=(NCMA EQ 9-87)

LTDSseismicGeogrid n( )

3030
3030

3030

3030

3030

3030

3030

3030

lb
ft
⋅

=Fin

465
671

794

917

1040

1163

1063

912

lb
ft
⋅

= Fdyn.in

332
398

398

398

398

398

332

265

lb
ft
⋅

= Fgstat.in

85
215

338

461

584

707

683

608

lb
ft
⋅

= FSto.seismicn

6.51
4.52

3.82

3.3

2.91

2.61

2.85

3.32

=

0 500 1000 1500

5

10

15

Constant seismic loading
Static
Total
Facing

Load (lb/ft)

W
al

l E
le

va
tio

n 
(f

t)
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ACn

535
980

2300

4122

6446

9182

12160

14367

lb
ft
⋅

= FSpo.seismicn

1.2
1.5

2.9

4.5

6.2

7.9

11.4

15.8

=lengthofgridn

11.5
10.5

10.5

10.5

10.5

10.5

10.5

10.5

ft⋅

=

Pullout

)(

)(
)( )(

ni

n
seismicpo F

AC
FS

n
=(NCMA EQ 9-89)

ACn

372
980

2300

4122

6446

9182

12160

14367

lb
ft
⋅

= Fin

465.21
671.02

794.04

917.05

1040.07

1163.08

1063.21

912.07

lb
ft
⋅

= FSpo.seismicn

0.8
1.5

2.9

4.5

6.2

7.9

11.4

15.8

=

* The top reinforcement layer needs to be increased to meet minimum safety factor of 1.1.

* * *

Internal Sliding

Redefine Cds to match actual grid properties for internal analysis

Cds 0.7=

Determine horizontal and vertical dynamic earth pressures calculating at each grid elevation (calculated in same manner
as external sliding loads are)

2
)()( )(5.0 nextrdynHndynH EHKP −∆=∆ γ(NCMA EQ 9-90)

2
)()( )(5.0 nextrdynVndynV EHKP −∆=∆ γ(NCMA EQ 9-91)

Define weights for resisting forces and inertial forces on wall

innr EHLW γ×−×′=′ )( )()((NCMA EQ 7-76)

inextui EHWHW γ))(5.0( )(−−=′∆(NCMA EQ 9-95)
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unextunw WEHW )( )()( −=∆ γ(NCMA EQ 9-94)

∆Win

760
3040

5320

7600

9880

12161

14441

15961

lb
ft
⋅

= ∆W'in

507
2027

3547

5067

6587

8108

9628

10641

lb
ft
⋅

= ∆WW n

77
307

537

767

997

1227

1457

1610

lb
ft
⋅

=
Wβ 1999

lb
ft
⋅=

Determine inertial forces from weight of wall system

)( )()()()( βWWWkP ninwexthnir ′+′∆+∆=∆(NCMA EQ 9-93)

Determine resistance to sliding at each grid layer

)()()()()( tan]])5.0(['[' nurndynVnqdVnsVdnrdsswdyn VPPPLqWWCR +∆+++++= φββ(NCMA EQ 9-92)

R'swdynn

2411
3542

4694

5866

7058

8271

9505

10338

lb
ft
⋅

= PqdH n

68
113

159

204

249

294

340

370

lb
ft
⋅

= PsHn

122
340

666

1101

1644

2297

3058

3626

lb
ft
⋅

= 0.5∆PdynH( )
n

12
35

68

113

168

235

313

371

lb
ft
⋅

= ∆PIRn

128
259

391

522

654

786

917

1005

lb
ft
⋅

= SlidingForcen

330
747

1283

1939

2716

3612

4628

5371

lb
ft
⋅

=

Determine FS internal sliding

)()()()(

)(_

5.0)(
nirndynHnqdHnsH

nseismics
slseismic PPPP

R
FS

n ∆+∆++

′
=(NCMA EQ 9-96)

FSsl.seismic1
1.92=
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Connection
Figure connection loads, same as load on grid Fi but static load reduced if there is an offset dead load surcharge and

connection elevation is is above its influence, use reduce dead surcharge connection load  from static calcs,
Fgdsurchargeconv3n

 to figure total seismic connection loads

)(

)(

)(
ni

conn
conseismic F

T
FS n

n
=(NCMA EQ 9-97)

Ficonn

423
620

743

866

989

1163

1063

912

lb
ft
⋅

=Tconn n( )

1027
1134

1241

1349

1456

1563

1670

1742

lb
ft
⋅

= FScon.seismicn
2.43
1.83

1.67

1.56

1.47

1.34

1.57

1.91

=

(where Ficon has been revised to take into
account the zone of influence)

Crest Toppling

25.0 zKP idynHdynHz γ∆=∆(NCMA EQ 9-98)

25.0 zKP idynVdynVz γ∆=∆(NCMA EQ 9-99)

Determine resisting and driving moments at each unit elevation

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+∆++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛++= ωω tan

2
)5.0(tan

3 )()()()()()(
zWPPzWPXWM uzdynVzqdVuzsVzwzwzrseismic(NCMA EQ 9-100)

⎟
⎠
⎞

⎜
⎝
⎛∆+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

2
5.0

232 )()()()(int)(
zPzPzPzWkM zdynHzqdHzsHzwhzoseismic

(NCMA EQ 9-101)

Determine FS crest toppling

)(

)(
)(

zoseismic

zrseismic
zctseismic M

M
FS

z
=(NCMA EQ 9-102)

Mr.dynpp
40.66 lb⋅

= Mo.dynpp
8.914 lb⋅

= FSct.seismicpp

4.56

=
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KAE.int 0.495= αi 52.324 deg⋅=Results of Internal Stability Anylysis (SEISMIC):
SRW 
unit #:

Elevation: Length: Anchor
length: 

FOS
Overstress:

FOS 
Pullout:

FOS Sliding: Allowable 
Strength:

LTDSseismicGeogrid n( )

3030
3030

3030

3030

3030

3030

3030

3030

lb
ft
⋅

srwn

21
18

15

12

9

6

3

1

= En

14
12

10

8

6

4

2

0.67

ft⋅

= lengthofgridn

11.5
10.5

10.5

10.5

10.5

10.5

10.5

10.5

ft⋅

=Lan

1.44
1.73

3.03

4.32

5.62

6.91

8.21

9.07

ft⋅

= FSto.seismicn

6.5
4.5

3.8

3.3

2.9

2.6

2.9

3.3

=FSpo.seismicn

1.2
1.5

2.9

4.5

6.2

7.9

11.4

15.8

= FSsl.seismicn

7.3
4.74

3.66

3.02

2.6

2.29

2.05

1.92

=

Pullout 
Capacity:

Sliding
Force:

Sliding
Capacity:

ACn

535
980

2300

4122

6446

9182

12160

14367

lb
ft
⋅

= SlidingForcen

330
747

1283

1939

2716

3612

4628

5371

lb
ft
⋅

= R'swdynn

2411
3542

4694

5866

7058

8271

9505

10338

lb
ft
⋅

=

Tensile Load
w/Surcharge
Influence

FOSConnection
w/surcharge influence:

Tensile/
Connection 
Load:

Connection 
Capacity (peak):

Fin

465
671

794

917

1040

1163

1063

912

lb
ft
⋅

= Ficonn

423
620

743

866

989

1163

1063

912

lb
ft
⋅

= Tconn n( )

1027
1134

1241

1349

1456

1563

1670

1742

lb
ft
⋅

= FScon.seismicn

2.43
1.83

1.67

1.56

1.47

1.34

1.57

1.91

=

Elfacialinfl 4.44 ft⋅=

Edfacialinfl 4.44 ft⋅=

Crest Toppling

Mr.dynpp
40.66 lb⋅

= Mo.dynpp

8.914 lb⋅

= FSct.seismicpp

4.56

=
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q =150 lb/ftl

βoffset

loffset
q

ω

H=14.7 ft

L=10.5 ft
embH

L=11.5 ft

TY
PE

 I
RE

IN
FO

RC
EM

EN
T

5 ft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

E1 = 0.67ft

E2 = 2.0ft

E3 = 4.0ft

E4 = 6.0ft

E5 = 8.0ft

E6 = 10.0ft

E7 = 12.0ft

E8 = 14.0ft

q =100 lb/ftd

doffset
q
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INTERNAL COMPOUND STABILITY (ICS) STATIC ANALYSIS

The following calculation is based on the results of the critical failure determined with the SRWall v.4.0 software.  The
geometry of the following sample calculation is identical to the one determined by the software; however, because of the
nature of the calculations, some of the results may not match exactly.

14.67

5.00

7.13°

22.55°
25.63°

28.78°
32.04°

35.41°

38.93°

42.64°

46.59°

50.85°

55.55°

6.59

3.19

0.50

13.33

13.00
11.00

1.98

1.25

0.31

Number of slices: Slices 10= ql 150
lb

ft 2
⋅= qd 100

lb

ft 2
⋅=

The area and width of the slices as well as the angle that each slice makes with the horizontal is measured directly off the
drawing above. In the case of an offset surcharge, only the width of the slice that is affected by the surcharge is determined.

S

1
2

3

4

5

6

7

8

9

10

=

α

22.55

25.63

28.78

32.04

35.41

38.93

42.64

46.59

50.85

55.55

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

deg⋅= AreaofSlice

15.2544

26.3594

26.1706

25.3311

22.8362

19.8604

16.4733

12.5977

8.1198

2.8565

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

ft 2
⋅= WidthofSlice

0

0

1.98

1.98

1.98

1.98

1.98

1.98

1.98

1.98

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

ft⋅=

WeightofSlice AreaofSlice γi⋅=

WeightDeadLoad WidthofSlice qd( )⋅=

WeightLiveLoad WidthofSlice ql( )⋅=
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(NCMA EQ 8-3) mα cos α( )
sin α( ) tan ϕi( )⋅( )

FS

⎡
⎢
⎣

⎤
⎥
⎦

+=

Fr
WeightofSlice WeightLiveLoad+ WeightDeadLoad+

mα
tan ϕi( )⋅=

FsS
WeightofSliceS WeightLiveLoadS+ WeightDeadLoadS+( ) sin α( )S⋅=

AreaofSlice

15.25
26.36

26.17

25.33

22.84

19.86

16.47

12.6

8.12

2.86

ft 2
⋅

= WeightofSlice

1831
3163

3140

3040

2740

2383

1977

1512

974

343

lb
ft
⋅

= Fr

968
1674

1931

1890

1748

1578

1383

1153

874

522

lb
ft
⋅

= Fs

702
1368

1750

1875

1875

1809

1674

1458

1139

691

lb
ft
⋅

=mα
1.091
1.091

1.087

1.08

1.068

1.053

1.032

1.005

0.971

0.926

=

AreaofSlice∑ 175.86 ft 2
⋅= WeightofSlice∑ 21103

lb
ft
⋅= Fr∑ 13722

lb
ft
⋅= Fs∑ 14341

lb
ft
⋅=

WeightLiveLoad

0
0

297

297

297

297

297

297

297

297

lb
ft
⋅

= WeightDeadLoad

0
0

198

198

198

198

198

198

198

198

lb
ft
⋅

= WeightofSlice WeightLiveLoad+ WeightDeadLoad+

1831
3163

3635

3535

3235

2878

2472

2007

1469

838

lb
ft
⋅

=

WeightLiveLoad∑ 2376
lb
ft
⋅= WeightDeadLoad( )∑ 1584

lb
ft
⋅=

WeightofSlice WeightLiveLoad+ WeightDeadLoad+( )∑ 25063
lb
ft
⋅=
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Contribution of Reinforcement Element(s):

Number of reinforcement elements intersecting slip surface: Ngrid 3=

Determine the Long-Term Design Strength, the overburden, the angle of the reinforcement with the horizontal and the
anchorage length of the reinforcement from the drawing above.

LTDS1 1917.91
lb
ft

= LTDS2 1917.91
lb
ft

= LTDS3 1917.91
lb
ft

=

OverB1 13.33ft= OverB2 13.00ft= OverB3 11ft=

αgrid1
25.63deg= αgrid2

32.04deg= αgrid3
35.41deg=

Lefp1
6.59ft= Lefp2

3.19ft= Lefp3
0.50ft=

Normal load on grid intersected by the failure surface:

Normalgridnn
γi OverBnn⋅= Normalgridnn

1600
1560

1320

lb

ft 2
⋅

=

Contribution of the grid reinfocement based on pullout:

Tgridnn

2 Ci⋅ Normalgridnn
qd+⎛

⎝
⎞
⎠

⋅ tan ϕi( )⋅ Lefpnn
⋅

1.5
= Tgridnn

6035
2853

383

lb
ft
⋅

=

The contribution of the reinforcement will be the lesser of the
pullout capacity of the LTDS of the reinforcement. Tgridnn

6035
2853

383

lb
ft
⋅

=

Tgrid∑ 4218
lb
ft
⋅=

Contribution of grid reinforcement normal to the radius of the failure surface:

Fgridnn
Tgridnn

cos αgridnn
⎛
⎝

⎞
⎠

⋅= Fgridnn

1729
1626

312

lb
ft
⋅

=

Fgrid∑ 3667
lb
ft
⋅=
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Contribution of the facing:

Tconn n( )

1027
1134

1241

1349

1456

1563

1670

1742

lb
ft
⋅

=Connection capacity

Shear Capacity

Block/Grid/Block Contribution Block/Block Contribution

au 1100
lb
ft
⋅= λu 32 deg⋅=a'u 1100

lb
ft
⋅= λ'u 35 deg⋅=

NVuBGBN k− 1+

1154
0

0

1315

0

0

1476

0

0

1637

0

0

1798

0

0

1959

0

0

2120

0

2227

0

lb
ft
⋅

= NVuBB N 1+( ) k−

0
1196

1244

0

1340

1387

0

1483

1531

0

1627

1675

0

1771

1819

0

1914

1962

0

2058

0

2154

lb
ft
⋅

=
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If the failure surface intersects the face of the wall where a grid is present, the B/G/B shear capacity governs, otherwise the
lesser of the B/B shear capacity or connection capacity distribution governs.

Results of Internal Compound Stability Anylysis:

Fr∑ 13722
lb
ft
⋅=

VuICS 2227
lb
ft
⋅=

Fs∑ 14341
lb
ft
⋅=

Fgrid∑ 3667
lb
ft
⋅=

WeightofSlice∑ 21103
lb
ft
⋅=

WeightofSlice WeightLiveLoad+ WeightDeadLoad+( )∑ 25063
lb
ft
⋅=

WeightLiveLoad∑ 2376
lb
ft
⋅=

WeightDeadLoad( )∑ 1584
lb
ft
⋅=

FSICS

Fr∑ Fgrid∑+ VuICS+

Fs∑
=

FSICS 1.368=
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INTERNAL COMPOUND STABILITY (ICS) SEISMIC ANALYSIS

The following calculation is based on the results of the critical failure determined with the SRWall v.4.0 software.  The
geometry of the following sample calculation is identical to the one determined by the software; however, because of the
nature of the calculations, some of the results may not match exactly.

2.70° 8.13° 13.63°
19.26°

25.10°
31.24°

37.81°

45.04°

53.39°

64.10°

0.44

13.00

2.13

14.67

5.00

7.13°

R 22.648ft=

A 0.2= kh.ext 0.08= qd 100
lb

ft 2
⋅=

Number of slices: Slices 10=

The area and width of the slices as well as the angle that each slice makes with the horizontal is measured directly off the
drawing above. In the case of an offset surcharge, only the width of the slice that is affected by the surcharge is determined.

S

1
2

3

4

5

6

7

8

9

10

=

α

2.70

8.13

13.63

19.26

25.10

31.24

37.81

45.04

53.39

64.10

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

deg⋅= AreaofSlice

17.4966

28.1692

29.4133

29.2290

27.3724

24.9291

21.7871

17.7471

12.4114

4.6718

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

ft 2
⋅= WidthofSlice

0

0

2.13

2.13

2.13

2.13

2.13

2.13

2.13

2.13

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

ft⋅=
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WeightofSlice AreaofSlice γi⋅=

WeightDeadLoad WidthofSlice qd( )⋅=

WeightLiveLoad WidthofSlice ql( )⋅=

(NCMA EQ 8-3) mα cos α( )
sin α( ) tan ϕi( )⋅( )

FS

⎡
⎢
⎣

⎤
⎥
⎦

+=

Fr
WeightofSlice WeightLiveLoad+ WeightDeadLoad+

mα
tan ϕi( )⋅=

FsS
WeightofSliceS WeightLiveLoadS+ WeightDeadLoadS+( ) sin α( )S⋅=

AreaofSlice

17.5
28.17

29.41

29.23

27.37

24.93

21.79

17.75

12.41

4.67

ft 2
⋅

= WeightofSlice

2100
3380

3530

3507

3285

2991

2614

2130

1489

561

lb
ft
⋅

= Fr

1189
1855

2010

1974

1851

1710

1543

1331

1037

538

lb
ft
⋅

= Fs

99
478

882

1227

1484

1662

1733

1658

1367

696

lb
ft
⋅

=mα
1.019
1.052

1.075

1.088

1.091

1.082

1.058

1.016

0.947

0.83

=

AreaofSlice∑ 213.23 ft 2
⋅= WeightofSlice∑ 25587

lb
ft
⋅= Fr∑ 15038

lb
ft
⋅= Fs∑ 11285

lb
ft
⋅=

WeightLiveLoad

0
0

0

0

0

0

0

0

0

0

lb
ft
⋅

= WeightDeadLoad

0
0

213

213

213

213

213

213

213

213

lb
ft
⋅

= WeightofSlice WeightLiveLoad+ WeightDeadLoad+

2100
3380

3743

3720

3498

3204

2827

2343

1702

774

lb
ft
⋅

=

WeightLiveLoad∑ 0
lb
ft
⋅= WeightDeadLoad( )∑ 1704

lb
ft
⋅=

WeightofSlice WeightLiveLoad+ WeightDeadLoad+( )∑ 27291
lb
ft
⋅=
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Contribution of Reinforcement Element(s):

Number of reinforcement elements intersecting slip surface: Ngrid 1=

Determine the Long-Term Design Strength, the overburden, the angle of the reinforcement with the horizontal and the
anchorage length of the reinforcement from the drawing above.

LTDSseis1
LTDS1 RFcr⋅=

OverB1 13ft=

αgrid1
25.10deg=

Lefp1
0.44ft=

Normal load on grid intersected by the failure surface:

Normalgridnn
γi OverBnn⋅= Normalgridnn

1560
lb

ft 2
⋅

=

Contribution of the grid reinfocement based on pullout:

Tgridseisnn

2 Ci⋅ Normalgridnn
⎛
⎝

⎞
⎠

⋅ tan ϕi( )⋅ Lefpnn
⋅

1.5
= Tgridseisnn

370
lb
ft
⋅

=

The contribution of the reinforcement will be the lesser of the
pullout capacity of the LTDS of the reinforcement. Tgridseisnn

370
lb
ft
⋅

=

Tgridseis∑ 370
lb
ft
⋅=

Contribution of grid reinforcement normal to the radius of the failure surface:

Fgridseisnn
Tgridseisnn

cos αgridnn
⎛
⎝

⎞
⎠

⋅= Fgridseisnn

335
lb
ft
⋅

=

Fgridseis∑ 335
lb
ft
⋅=
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Contribution of the facing:

Tconn n( )

1027
1134

1241

1349

1456

1563

1670

1742

lb
ft
⋅

=Connection capacity
Shear Capacity

Block/Grid/Block Contribution Block/Block Contribution

au 1100
lb
ft
⋅= λu 32 deg⋅=a'u 1100

lb
ft
⋅= λ'u 35 deg⋅=

NVuBGBN k− 1+

1154
0

0

1315

0

0

1476

0

0

1637

0

0

1798

0

0

1959

0

0

2120

0

2227

0

lb
ft
⋅

= NVuBB N 1+( ) k−

0
1196

1244

0

1340

1387

0

1483

1531

0

1627

1675

0

1771

1819

0

1914

1962

0

2058

0

2154

lb
ft
⋅

=
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DynFS WeightofSliceS kh.ext⋅=

WeightofSlice

2100
3380

3530

3507

3285

2991

2614

2130

1489

561

lb
ft
⋅

= DynF

158
254

265

264

247

225

197

160

112

42

lb
ft
⋅

=

DynF∑ 1924
lb
ft
⋅=

Results of Internal Compound Stability Anylysis:

Fr∑ 15038
lb
ft
⋅=

VuICS 2120
lb
ft
⋅=

Fs∑ 11285
lb
ft
⋅=

Fgridseis∑ 334.95
lb
ft
⋅=

WeightofSlice∑ 25587
lb
ft
⋅=

WeightofSlice WeightLiveLoad+ WeightDeadLoad+( )∑ 27291.24
lb
ft
⋅=

WeightLiveLoad∑ 0
lb
ft
⋅=

WeightDeadLoad( )∑ 1704
lb
ft
⋅=

DynF∑ 1924
lb
ft
⋅=

FSICSdyn

Fr∑ Fgridseis∑+ VuICS+

Fs∑ DynF∑+
= FSICSdyn 1.324=
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APPENDIX C
DETERMINATION OF LONG-TERM DESIGN STRENGTH, LTDS

OF GEOSYNTHETIC SOIL REINFORCEMENT

C.1:  Background  

Geosynthetic reinforcement systems consist of geogrid or geotextile materials arranged in horizontal planes in the 
backfill to resist outward movement of the reinforced soil mass. Geosynthetic design strength must be determined 
by testing and analysis methods that account for the long‑term dimensional stability and durability of the full 
geosynthetic structure.  Dimensional stability is characterized by the ability of the geosynthetic structure to sustain 
long‑term loads in service without excessive creep strains or creep rupture.  Durability factors include site damage, 
chemical degradation and biological degradation and creep.  

C.2:  Long-Term Design Strength 

Long-Term Design Strength (LTDS) of the geosynthetic shall be determined using a reduction factor approach to 
account for creep rupture strength and degradation mechanisms of the reinforcement. 

For reinforced SRW’s, the long‑term design strength of the geosynthetic LTDS is:

	
  

 x  x 
ult

D ID CR

TLTDS
RF RF RF

=
	

where:

Tult 	 =	 Ultimate (or yield tensile strength) from single or multi-rib tensile strength test (ASTM D 6637 [Ref. 
85]) for geogrids or wide width tensile strength test (ASTM D 4595 [Ref. 81]) for geotextiles, based 
on minimum average roll value (MARV) for the product.

RFD 	 =	 Durability reduction factor is dependent on the susceptibility of the geosynthetic to attack by 
microorganisms, chemicals, thermal oxidation, hydrolysis and stress cracking.  The typical range is 
from 1.1 to 2.0.  The minimum reduction factor shall be 1.1.

RFID 	 =	 Installation damage reduction factor can range from 1.05 to 3.0, depending on backfill gradation and 
product mass per unit weight.  The minimum reduction factor shall be 1.05 to account for testing 
uncertainties.

RFCR	 =	 Creep reduction factor is the ratio of the ultimate strength (Tult) to the creep limit strength obtained 
from laboratory creep tests for each product, and can vary typically from1.5 to 5.0.

	
C.2.a:  Ultimate Tensile Strength 

Ultimate tensile strength (Tult) values shall be based upon Minimum Average Roll Values (MARV), per ASTM D 
4759 [Ref. 111], and determined in accordance with ASTM D 6637 [Ref. 85] for geogrids and ASTM D 4595 [Ref. 
81] for geotextiles. 

C.2.b:  Creep

Long‑term tension‑strain‑time behavior of polymeric reinforcement shall be determined from results of controlled 
laboratory creep tests.  Current state of practice indicates that creep is evaluated using creep rupture approaches.  
ASTM D 5262 [Ref. 82] outlines test methods for ‘conventinal’ creep rupture testing under standard laboratory 
conditions and raised temperature conditions using Time-Temperature Superposition method (TTS).  Additionally, 



264� Design Manual for Segmental Retaining Walls 3rd Edition 

Figure C-2:  Comparison of Conventional and Creep Rupture Data—Geosynthetic Product B

Figure C-1:  Comparison of Conventional and Creep Rupture Data—Geosynthetic Product A
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Figure C-3:  Comparison of Conventional and Creep Rupture Data for Similar Products within a Product Family

50

55

60

65

70

75

80

85

90

95

100

0.1 1 10 100 1000 10000 100000 1000000 10000000

Lo
ad

 (%
U

TS
)

Time (h)

Product Family

Conventional (ASTM D5262)

creep rupture may be evaluated using ASTM D6992 [Ref. 110] Creep Rupture using Stepped-Isothermal Method 
(SIM).  SIM provides an accelerated means of defining the creep rupture behavior of polymer geosynthetics.  Where 
SIM is utilized to define the creep rupture behavior of the geosynthetic, the data should be verified with conventional 
creep rupture data.   At a minimum, conventional creep rupture data shall include 1,000-hr and 10,000-hr rupture times 
at room temperature (20°C).  The time to rupture using conventional creep should be similar to the time to rupture 
predicted using SIM.  The data from SIM and conventional rupture may be combined to develop the creep rupture 
envelope for a product or product line.  Figures C-3 and C-4 illustrate the progression taken to evaluate conventional 
and SIM creep rupture data to develop a creep rupture envelope for a product family.

The creep reduction factor (RFCR) is the ratio of the ultimate strength (Tult) to the extrapolated maximum sustainable 
load (i.e., creep rupture limit) within the design life of the structure.  

Figure C-5 illustrates the two critical stages of creep behavior in polymers as well as the wide variation in accumulated 
strain from tests conducted at six different load levels for the same geosynthetic reinforcement.  The excessive strain 
generated by load levels T4, T5 and T6 indicate transition to the “tertiary” creep stage and onset of creep rupture.  
Load levels T1, T2 and T3 clearly show the “secondary” stage of creep with very low strain rates (i.e. flat curves 
showing decreasing strain with log of time).  The RFCR ensures that the reinforcement remains in the “secondary” 
stage of creep, and creep rupture is avoided, throughout the design life of the reinforced structure. 

Creep test data at a given temperature may be directly extrapolated out over time up to one order of magnitude, in 
accordance with standard polymeric practices. Accelerated testing is required to extrapolate 10,000 hour creep test 
data to a minimum 75 year design life.    Accelerated testing is used to extrapolate to a 75 year design life and to 
ensure the failure mechanism, i.e., ductile to brittle transition, is defined.   Conventional Creep Rupture and SIM 
Creep Rupture may be used to effectively define the creep behavior of a geosynthetic for 75 to 100 design life. 
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The requirement for a 10,000 hour minimum creep test period for geogrids and geotextiles may be waived for a 
new product if it can be demonstrated that it is sufficiently similar to a proven 10,000 hour creep tested product of a 
similar nature. Product similarity must consider base resin, resin additives, product manufacturing process, product 
geometry, and creep response. When these conditions are met, creep testing shall be conducted for a minimum of 
1,000 hours.  The 1,000 hour conventional creep curves shall pattern very closely to the 1,000 hour portion of the 
10,000 hour creep curves of the similar product.  Alternatively, SIM creep rupture to a minimum of 3 rupture times, 
including 1,000 hour, may be used to verify new products.  The SIM creep rupture regression line for the similar 
product line should predict similar creep rupture performance over the design life of the product.

C.2.c:  Construction Installation Damage
 

The effect of construction damage on the reinforcement shall be determined from the results of full‑scale construction 
damage tests.  The effect of construction damage tests shall be incorporated into the installation damage reduction 
factor RFID, which is applied in determining an allowable reinforcement tension.  Values must be substantiated by 
construction damage tests (ASTM D 5818 [Ref. 84]) for the selected or family of geosynthetic materials with project 
specific, representative, or a more severe backfill source.  The behavior of the geosynthetic in backfill materials 
differing from the test material may be predicted by correlating the installation damage factor to the D50 of the 
backfill materials.   The behavior of similar products within a geosynthetic family may be predicted by correlating 
the installation damage factor to product weight, or utilizing factors determined from similar, but lighter weight, 
products of the same family.  In no case shall an installation damage reduction factor, RFid, less than 1.05 be used.  
The reduction factor considered in design must be justified by testing conducted with similar or more severe soils, 
and similar or more severe construction placement techniques.

Figure C-4:   Illustration of Combined Conventional and SIM Creep Rupture Data for a Product Family
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C.2.d:  Durability

The effect of chemical and biological durability should be evaluated for the geosynthetic reinforcement.  Research 
indicates that biological degradation in typical, natural soils as recommended in this manual is very unlikely for 
geosynthetic made with quality polymer materials (polyester, polypropylene, polyethylene, PVA, fiberglass).  
Chemical degradation can occur under certain environmental exposures and is dependent upon the base polymer 
material of the geosynthetic.  

The recommended range of acceptable soil fill pH is 3 to 9.  Soils with pH > 12 or pH < 3 should not be used without 
specific supporting test data.  This recommendation does differentiate between specific chemical constituents that 
can create extreme pH environments.

The durability reduction factor, RFD, may vary from as low as 1.1 to over 2.0 depending on the aggressiveness of 
the soil environment and the characteristics or polymer type of the geosynthetic.  In no case should a durability 
reduction factor, RFD, less than 1.1 be used.
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Figure C-5:  Load-Strain-Time data for Geosynthetic Reinforcement
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C.2.e:  Default Reduction Factors

For SRW applications that are defined as not having severe consequences should poor performance or failure occur, 
and have non-aggressive soil conditions, plus the geosynthetic meets the minimum requirements in Table C-1, the 
long term design strength of the reinforcement may be determined using a default reduction factor for RF = 10 
(where RF = RFCR x RFID x RFD).

Table C-1:  Minimum Requirements for Geosynthetic Products to Allow Use of Default Reduction Factor 
for Long-Term Degradation

Polymer Type Property Test Method Criteria to Allow Use of 
Default RF*

Polypropylene UV Resistance ASTM D 4355 Min. 70% strength retained 
after 500 hrs in weatherometer

Polyethylene UV Resistance ASTM D 4355 Min. 70% strength retained 
after 500 hrs in weatherometer

Polyester Hydrolysis 
Resistance

Intrinsic Viscosity Method (ASTM D 
4603) with Correlation, or Determine 

Directly Using Gel Permeation 
Chromatography

Min. number average 
Molecular weight of 25,000

Polyester Hydrolysis 
Resistance ASTM D 2455 Max. of Carboxyl End Group 

Content of 30

All Polymers Survivability Weight per unit area (ASTM D 5261) Min. 270 g/m2

All Polymers
% Post-Consumer 
Recycled Material 

by Weight
Certification of Materials Used Maximum of 0%
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CONVERSION TABLE

INCH-POUND

1 inch (in.)
1 foot (ft)
1 yard (yd)
1 square foot (ft2)
1 square yard (yd2)
1 ounce (oz)
1 pound (lb)
1 pound (force) (lbs)
1 pound/foott (lbs/ft)
1 pound/inch (lbs/in.)
1 pound/sq. inch (psi)
1 pound/sq. foot (psf)
1 pound/cu. foot (pcf)

	 METRIC

1 millimeter (mm)
1 meter (m)
1 meter (m)
1 square meter (m2)
1 square meter (m2)
1 gram (gm)
1 kilogram (kg)
1 newton (N) (1 kg, force)
1 kilonewton/meter (kN/m)
1 kilonewton/meter (kN/m)
1 kilopascal (kPa)
1 kilopascal (kPa)
1 kilonewton/cubic meter (kN/m3)

  TO

=
=
=
=
=
=
=
=
=
=
=
=
=

TO

=
=
=
=
=
=
=
=
=
=
=
=
=

	 METRIC

25.4	 millimeters (mm)
0.3048	 meters (m)
0.9144	 meters (yd)
0.0929	 square meters (m2)
0.8361	 square meters (m2)
28.35	 grams (gm)
0.4536	 kilogram (kg)
4.448	 newtons (N)
0.0146	 kilonewtons/meter (kN/m)
0.1751	 kilonewtons/meter (kN/m)
6.895	 kilopascal (kPa)
0.0479	 kilopascal (kPa)
0.1571	 kilonewtons/cubic meter 	 (kN/m3)

            INCH-POUND

0.03937	 inches (in)
39.37	 inches (in)
3.281	 feet (ft)
10.76	 sq. feet (ft2)
1.196	 sq. yards (yd2)
0.0353	 ounces (oz)
2.205	 pounds (lb)
0.2248	 pounds force (lb)
68.5	 pounds/foot (lbs/ft)
5.71	 pounds/inch (lbs/in)
0.145	 pounds/sq. inch (psi)
20.87	 pounds/sq. foot (psf)
6.365	 pounds/cu. foot (pcf)
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NOTATIONS & ABBREVIATIONS

Note: the (n) notation refers to reinforcement layers and the (z) notation refers to concrete 
unit depth from the top of wall.

A	 =	horizontal peak ground acceleration 
(ft/s2)

ACn	 =	anchorage capacity for nth reinforcement 
layer (lb/ft)

AOS	 =	apparent opening size of the geotextile

Ac(n)	 =	contributory area for tensile load in nth 
layer of reinforcement (ft), actually ft2, 
but unit width understood

Af	 =	area of flow ft2 (m2)

acs	 =	apparent minimum ultimate connection 
strength between geosynthetic reinforce-
ment and segmental units (lb/ft)

acs1	 =	apparent minimum ultimate connection 
between geosynthetic reinforcement and 
segmental units for the first line on a bi-
linear connection curve (lb/ft)

acs2	 =	apparent minimum ultimate connection 
between geosynthetic reinforcement and 
segmental units for the second line on a 
bilinear connection curve (lb/ft) 

au	 =	apparent minimum ultimate shear capac-
ity between segmental units (lb/ft)

B	 =	equivalent footing width of eccentrically 
loaded foundation base of soil reinforced 
SRWs  (ft)

Bc	 =	equivalent footing width for eccentri-
cally loaded gravity SRWs (ft)

cB′ 	 =	equivalent footing width for eccentri-
cally loaded gravity SRWs on seismic 
conditions (ft)

Bseismic	 =	equivalent footing width of eccentrically 
loaded foundation base of soil reinforced 
SRWs on seismic conditions (ft)

Cds	 =	coefficient of direct sliding

Ci	 =	coefficient of interaction for pullout

c	 =	cohesion of soil (psf)

cf	 =	cohesion of foundation soil (psf)

Dn	 =	depth to mid-point of contributory area 
of Ac(n) of nth reinforcement layer (ft)

dint	 =	horizontal distance from the back of the 
wall to the intersection of the slope and 
the internal failure plane (ft)

dn	 =	average depth of overburden of nth lay-
er of reinforcement over the anchorage 
length, La(n) (ft)

dseismic	 =	design lateral deflection during seismic 
event  (in.)

Eqdinfl	 =	elevation of the influence of dead load  
based on 2V:1H influence line (ft)

Eqlinfl	 =	elevation of the influence of live load  
based on 2V:1H influence line (ft)

E(n)	 =	elevation of nth reinforcement layer above 
base of wall (ft)

e	 =	eccentricity of resultant vertical bearing 
force (ft)

ec	 =	eccentricity of resultant vertical bearing 
force, conventional walls (ft)

er	 =	eccentricity of self-weight of reinforced 
zone plus surcharge (ft)
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ew	 =	eccentricity of column of SRW (ft)

FE 	 =	material factor for creep extrapolation

FSbc	 =	factor of safety, bearing capacity

FScs	 =	factor of safety, connection strength

FSgl	 =	factor of safety, global stability

FSot	 =	factor of safety, overturning

FSpo	 =	factor of safety, pullout

FSsc	 =	factor of safety, shear capacity

FSsl	 =	factor of safety, sliding

FSto	 =	factor of safety, tensile overstress

Fg(n)	 =	force in nth geosynthetic reinforcement 
layer (lb/ft)

Gu	 =	horizontal center of gravity of segmen-
tal unit (ft), vertical center of gravity as-
sumed at Hu /2

g	 =	gravitational constant lb ft/s2 (kg m/s2)

H	 =	 total height of wall (ft)

H′	 =	exposed height of wall (ft)

H1	 =	exposed height of the lower wall (ft)

H2	 =	exposed height of the upper wall (ft)

Hcu	 =	cap/coping height for segmental unit (ft)

Hemb	 =	 total wall embedment (ft)

Hext	 =	height of back of reinforced wall over 
which the active earth pressure for external 
stability is calculated (ft)

Hl	 =	 lower wall height (ft)

Hu	 =	segmental unit height (ft)

h	 =	 increase in height due to backslope at the 
end of the reinforced zone (ft)

hinflmax	 =	 theoretical maximum height of back-
slope based on 2V:1H influence line (ft)

hint	 =	height above the reinforced mass at the 
intersection of a continuous slope or bro-
ken back slope and the internal failure 
surface (ft)

hIR	 =	height from toe of wall to line of action 
of inertial force PIR (ft)

hmax	 =	 increase in height due to backslope at 
distance of Lβ + (H+h) (ft)

hmaxint	 =	maximum height due to backslope at dis-
tance of 2H (ft)

hs	 =	 increase in height due to backslope at 
the end of the reinforced zone in broken 
back geometry (ft)

I	 =	 revised slope angle (deg)

i	 =	hydraulic gradient (ft/ft)

Ka	 =	active earth pressure coefficient

KaE	 =	dynamic earth pressure coefficient

KaEcon	 =	dynamic earth pressure coefficient for 
conventional retaining walls

KaEH	 =	horizontal component of the dynamic 
earth pressure coefficient

KaEV	 =	vertical component of the dynamic earth 
pressure coefficient

Kaext	 =	active earth pressure coefficient for ex-
ternal calculations

Kaint	 =	active earth pressure coefficient for inter-
nal calculations

k	 =	permeability of aggregate (ft/ft)

kgeotextile	 =	normal permeability of geotextile (ft/sec)

kh	 =	horizontal seismic coefficient

khint	 =	value of kh used for internal and facing 
stability calculations
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khext	 =	value of kh used for external calculations

ksoil	 =	soil permeability  (ft/sec)

kv	 =	vertical seismic coefficient

L	 =	minimum base width (ft)

LTDS	 =	 long-term design strength (lb/ft)

La(n)	 =	anchorage length for nth reinforcement 
layer (ft)

Le	 =	 length of reinforcement in anchorage 
zone during pullout test (ft)

Ls	 =	 length of reinforcement at base of inter-
nal sliding wedge (ft)

Lu	 =	segmental unit length (ft)

L′	 =	width of reinforced zone (ft)

L′′	 =	 increase in width due to backslope angle 
β (ft)

sL′ 	 =	width of reinforced for internal sliding 
on the nth reinforcement layer (ft)

Lβ	 =	horizontal width of reinforced zone at in-
tersection with backslope, β (ft)

Lβq	 =	distance over which dead load is applied 
in broken back geometry (ft)

MSE	 =	Mechanically Stabilized Earth

Mo	 =	overturning moment (ft-lb/ft)

Mr	 =	resisting moment (ft-lb/ft)

N	 =	number of reinforcement layers in design

Ne , Nq , Nγ	 =	bearing capacity factors

Nmin	 =	minimum number of reinforcement 
layers

Pa	 =	 total active earth force (lb/ft)

PaE	 =	 total dynamic active earth force (lb/ft)

PaEH	 =	horizontal component of PaE (lb/ft)

PaEV	 =	vertical component of PaE (lb/ft)

PaH	 =	horizontal component of active earth 
force (lb/ft)

PaH(n)	 =	 total horizontal active earth force acting at 
(Hext - E(n) ) (lb/ft)

Pa(n)	 =	active earth force acting at (Hext - E(n) ) 
(lb/ft)

PaV	 =	vertical component of active earth force 
(lb/ft)

PaV(n)	 =	 total vertical active earth force acting at 
(Hext - E(n) ) (lb/ft)

PIR	 =	horizontal inertial force due to the rein-
forced soil mass used in external stability 
calculations (lb/ft)

Pq	 =	resultant force due to active earth pressure 
from uniform surcharge, qi + qd (lb/ft)

PqdH	 =	resultant horizontal force due to active 
earth pressure from uniform dead load 
surcharge (lb/ft)

PqdH(n)	 =	horizontal component of Pqd acting at (Hext 
- E(n) ) (lb/ft)

PqdV	 =	resultant vertical force due to active earth 
pressure from uniform dead load sur-
charge (lb/ft)

PqdV(n)	 =	vertical component of Pqd acting at (Hext - 
E(n) ) (lb/ft)

PqlH	 =	 resultant horizontal force due to active 
earth pressure from uniform live load sur-
charge (lb/ft)

PqlH(n)	 =	horizontal component of Pql acting at (Hext 
- E(n) ) (lb/ft)

PqlV	 =	 resultant vertical force due to active earth 
pressure from uniform live load surcharge, 
(lb/ft)
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PqlV(n)	 =	vertical component of Pql acting at (Hext - 
E(n) ) (lb/ft)

Ps	 =	 resultant force due to active earth pres-
sure from soil self-weight (lb/ft)

PsH	 =	 resultant horizontal force due to active 
earth pressure from soil self-weight (lb/ft)

PsH(n)	 =	horizontal component of Ps acting at (Hext 
- E(n) ) (lb/ft)

PsV	 =	 resultant vertical force due to active earth 
pressure from soil self-weight (lb/ft)

PsV(n)	 =	vertical component of Ps acting at (Hext - 
E(n) ) (lb/ft)

P′aH	 =	 total horizontal force due to active earth 
pressure for internal calculations (lb/ft)

P′qH	 =	resultant horizontal force due to active 
earth pressure from uniform surcharge 
(ql + qd ) for internal calculations (lb/ft)

P′sH	 =	resultant horizontal force due to active 
earth pressure from soil self-weight for 
internal calculations (lb/ft)

Qa	 =	applied bearing stress (psf)

Qult	 =	ultimate bearing capacity of foundation 
soils (psf)

qdoffset	 =	horizontal distance from the back of the 
top block to the beginning of a uniform 
dead load surcharge (ft)

qf	 =	flow capacity (ft3/sec) 

ql or qd	 =	uniform surcharge loading at top of wall 
(psf) (live or dead)

qloffset	 =	horizontal distance from the back of the 
top block to the beginning of a uniform 
live load surcharge (ft)

R	 =	radius of potential slip circle in slope sta-
bility analysis (ft)

Rb	 =	resultant vertical bearing force (lb/ft)

Rds	 =	maximum resistance in direct shear test 
(lb/ft)

Rpo	 =	maximum resistance in pullout test (lb/ft)

Rs	 =	base sliding resistance (lb/ft)

Rs(w)	 =	sliding resistance at base of soil rein-
forced SRW (lb/ft)

RFCR	 =	creep reduction factor 

RFD	 =	durability reduction factor

RFID	 =	 installation damage reduction factor 

R′s(n)	 =	sum of the resistance of all reinforcement 
layers above the nth layer (lb/ft)

R′s(w)	 =	base sliding resistance for internal slid-
ing wedge (lb/ft)

RSW  	 =	sliding resistance at base of SRW units 
(lbs/ft)

SRW	 =	segmental retaining wall

Tconn	 =	connection strength between geosynthetic 
reinforcement and segmental units (lb/ft)

TconnMAX	 =	ultimate maximum connection 
strength between geosynthetic rein-
forcement and segmental units (lb/ft) 

Tindex	 =	 index tensile strength (lb/ft)

Tlim	 =	 limit state or limiting tensile strength 
(lb/ft)

Tult	 =	ultimate tensile strength from wide width 
tensile strength test (lb/ft)

t	 =	 time (hr)

td	 =	 time limit for design, i.e., design life (hr)

tr	 =	 the number of different reinforcement 
types in design

tref	 =	reference time of known creep perfor-
mance of reinforcement (hr)
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u	 =	porewater pressure (psf)

Vu	 =	shear capacity between segmental units 
(lb/ft)

Vu(max)	 =	peak interface shear capacity between 
SRW units (lb/ft)

Vu(n)	 =	shear capacity between segmental units 
at reinforcement n (lb/ft)

Wr	 =	weight of the reinforced zone (lb/ft)

Wrβ	 =	weight of slope above the reinforced 
zone (lb/ft)

Wrβ1,2,3	 =	components of weight of slope above the 
reinforced zone in broken back geometry 
(lb/ft)

Wu	 =	segmental unit width (ft)

WW	 =	weight of the column of segmental re-
taining wall units (lb/ft)

W′i	 =	reduced weight of reinforced zone extend-
ing from the back of the facing column to 
length 0.5H beyond the face of the wall 
and having constant height H used to cal-
culate the inertial force PIR (lb/ft)

W′ri(n)	 =	weight of soil on reinforcement layer n

W′rβ(n)	 =	weight of slope above the reinforced 
zone at reinforcement layer N (lb/ft)

W′u	 =	weight of SRW unit including aggregate 
fill (lb/ft)

W′β	 =	reduced weight of the wedge of soil in 
the slope above the crest of the wall at 
height H used to calculate the inertial 
force PIR (lb/ft)

w	 =	placement moisture content (%)

wopt	 =	optimum moisture content (%)

Xq	 =	moment arm for PqV (ft)

Xqβ	 =	moment arm for qd  Lβ

Xri	 =	moment arm for Wri (ft)

Xrβ	 =	moment arm for Wrβ (ft)

Xrβ1,2,3	 =	moment arms for Wrβ1,2,3 (ft)

Xs	 =	moment arm for PsV (ft)

XW	 =	moment arm for WW (ft)

Yq	 =	moment arm for PqH (ft)

Ys	 =	moment arm for PsH (ft)

z	 =	depth below the ground surface (ft)

α	 =	failure surface orientation (deg)

αe	 =	 inclination of Coulomb failure surface 
(deg) for external stability

αi	 =	 inclination of Coulomb failure surface 
for internal stability (deg)

β 	 =	backfill slope angle, from horizontal at 
top of wall (deg)

βcon	 =	equivalent backfill slope angle from hori-
zontal at top of wall for conventional 
walls (deg)

βext	 =	equivalent backfill slope angle for broken 
back slope for external calculations (deg)

βint	 =	equivalent backfill slope angle for broken 
back slope for internal calculations (deg)

βoffset	 =	horizontal distance from the back of the 
top block to the crest of the slope (ft)

γ	 =	unit weight of soil (pcf)

γd	 =	moist unit weight of drainage fill (pcf)

γf	 =	moist unit weight of foundation soil 
(pcf)

γfl	 =	submerged unit weight of soil (pcf)

γi	 =	moist unit weight of infill soil (pcf)
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γr	 =	moist unit weight of retained soil (pcf)

γsat	 =	saturated unit weight (pcf)

γu	 =	weight per unit volume for segmental 
units as placed including gravel in core/
voids (pcf)

γwater	 =	water unit weight, 62.4 (pcf)

δ	 =	 interface friction angle (deg)

δc	 =	wall to soil friction angle for internal sta-
bility analysis (deg)

δe	 =	wall to soil friction angle for convention-
al walls (deg)

δi	 =	wall to soil friction angle for internal sta-
bility analysis (deg)

ΔKdyn	 =	dynamic active earth pressure coefficient 
increment

ΔKdynH	 =	horizontal component of the dynamic ac-
tive earth pressure coefficient increment

ΔKdynV	 =	vertical component of the dynamic ac-
tive earth pressure coefficient increment

ΔPdyn	 =	dynamic earth force increment (lb/ft)

ΔPdynH	 =	horizontal component of the dynamic 
earth force increment (lb/ft)

ΔPdynV	 =	vertical component of the dynamic earth 
force increment (lb/ft)

Δu	 =	setback per course (in.)

εd	 =	 long-term design strain for geosynthetic 
reinforcement

θ	 =	seismic inertia angle (deg)

θext	 =	seismic inertia angle for conventional 
walls (deg)

Θ	 =	 inclination angle at the base of slice in 
slope stability analysis (deg)

λcs	 =	apparent angle of friction for peak con-
nection strength of segmental units to 
geosynthetic reinforcement (deg)

λcs1	 =	apparent angle of friction between geo-
synthetic reinforcement and segmental 
units for the first line on a bilinear con-
nection curve (deg)

λcs2	 =	apparent angle of friction between geo-
synthetic reinforcement and segmental 
units for the second line on a bilinear 
connection curve (deg) 

λu	 =	apparent angle of friction between seg-
mental units for peak shear capcity (deg)

μb	 =	coefficient of interface friction for seg-
mental unit sliding on soils 

σa	 =	 lateral earth pressure for the active state 
(psf)

σn	 =	normal stress (psf)

σ′n	 =	effective normal stress (psf) 

σv	 =	vertical soil stress (psf)

ϕ	 =	peak friction angle (deg)

ϕd	 =	angle of internal friction, drainage fill 
(deg)

ϕf	 =	angle of internal friction, foundation soil 
(deg)

ϕi	 =	angle of peak internal friction for the re-
inforced soil (deg)

ϕr	 =	angle of internal friction, retained soil 
(deg)

ϕrc	 =	angle of internal friction,retained soil for 
conventional walls (psi)

τ	 =	shear strength

ω	 =	unit inclination or facing batter due to 
setback per SRW unit Hu (deg)
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